# A Permission-Dependent Type System for Secure Information Flow Analysis

Zhiwu Xu<sup>a</sup>, Hongxu Chen<sup>b</sup>, Alwen Tiu<sup>c</sup>, Yang Liu<sup>b</sup>, Kunal Sareen<sup>c</sup>

<sup>a</sup> College of Computer Science and Software Engineering, Shenzhen University, China

E-mail: xuzhiwu@szu.edu.cn

<sup>b</sup> Nanyang Technological University, Singapore

*E-mails: hongxu.chen@ntu.edu.sg, yangliu@ntu.edu.sg* 

<sup>c</sup> The Australian National University, Australia

*E-mails: alwen.tiu@anu.edu.au, kunal.sareen@anu.edu.au* 

Abstract. We introduce a novel type system for enforcing secure information flow in an imperative language. Our work is motivated by the problem of statically checking potential information leakage in Android applications. To this end, we design a lightweight type system featuring Android permission model, where the permissions are statically assigned to applications and are used to enforce access control in the applications. We take inspiration from a type system by Banerjee and Naumann to allow security types to be dependent on the permissions of the applications. A novel feature of our type system is a typing rule for conditional branching induced by permission testing, which introduces a merging operator on security types, allowing more precise security policies to be enforced. The soundness of our type system is proved with respect to non-interference. A type inference algorithm is also presented for the underlying security type system, by reducing the inference problem to a constraint solving problem in the lattice of security types. In addition, a new way to represent our security types as reduced ordered binary decision diagrams is proposed.

26 Keywords: secure information flow, secure type system, non-interference, permission-dependent, Android

# 1. Background and Introduction

Mobile security has become increasingly important for our daily life due to the pervasive use of mobile applications. Among the mobile devices that are currently in the market, Android devices account for the majority of them so analyses of their security have been of significant interest. There has been a large number of analyses on Android security ([1–5]) focusing on detecting potential security violations. Here we are interested instead in the problem of constructing secure applications, in particular, in providing guarantees of information flow security in the constructed applications.

We follow the language-based security approach whereby information flow security is enforced through type systems [6–9]. In particular, we propose a design of a type system that guarantees a non-interference property [8], i.e., typable programs are non-interferent. As shown in [10], non-interference provides a general and natural way to model information flow security. The type-based approach to non-interference requires assigning security labels to program variables and security policies to functions or procedures. Such policies are typically encoded as types, and typeability of a program implies that the runtime behavior of the program complies with the stated policies. Security labels form a lattice structure with an underlying partial order  $\leq$ , e.g., a lattice with two elements "high" (H) and "low" (L) 

0000-0000/0-1900/\$00.00 © 0 - IOS Press and the authors. All rights reserved

2.0

2.2

where  $L \leq H$ . Typing rules can then be designed to prevent both explicit and implicit flow (through conditionals, e.g., if-then-else statements) from *H* to *L*. To prevent an *explicit* flow, the typing rule for an assignment statement such as x := e would require that  $l(e) \leq l(x)$  where l(.) denotes the security level of an expression. To prevent an *implicit* flow, e.g., *if* (y = 0) *then* x := 0 *else* x := 1, most type systems for non-interference require that the assignments in *both* branches are given the same security level that is higher or at least equal to the security level of the condition (y=0). For example, if y is of type H and x is of type L, the statement would not be typable.

#### 1.1. Motivating Examples

In designing an information flow type system for Android, we encounter a common pattern of con-ditionals that would not be typable using conventional type systems. Consider the pseudo-code in List-ing 1. Such a code fragment could be part of a phone dialer or a social network service app such as Facebook and WhatsApp, where getContactNo provides a public interface to query the phone number associated with a name. The (implicit) security policy in this context is that contact information (the phone number) can only be released if the calling app has the permission READ\_CONTACT. The latter is enforced using the *checkPermission* API in Android. Suppose phone numbers are labelled with H, and the empty string is labelled with L. If the interface is invoked by an app that has the required permission, the phone number (H) is returned; otherwise an empty string (L) is returned. In both cases, no data leak-age happens: in the former case, the calling app is authorized; and in the latter case, no sensitive data is 2.0 ever returned. By this informal reasoning, the function complies with the implicit security policy and it should be safe to be called in *any* context, regardless of the permissions the calling app has. However, 2.2 2.2 in the traditional (non-value dependent) typing rule for the if-then-else construct, one would assign the same security level to both branches, and the return value of the function would be assigned level H. As a result, if this function is called from an app with *no* permission, assigning the return value to a variable with security level L has to be rejected by the type system even though no sensitive information is leaked. To cater for such a scenario, we need to make the security type of getContactNo depend on the permissions possessed by the caller. 

Banerjee and Naumann [11] proposed a type system (which we shall refer to as BN system) that incorporates permissions into function types. Their type system was designed for an access control mechanism different from ours, but the basic principles are still applicable. In BN system, a Java class may be assigned a set of permissions which need to be *explicitly enabled* via an **enable** command for them to have any effect. We say a permission is *disabled* for a class if it is *not assigned* to the class, or it is assigned to the class but is not explicitly enabled. Depending on the permissions of the calling class (corresponding to an app in the above example), a function such as getContactNo can have a collection of types. In BN system, the types of a function take the form  $(l_1, \ldots, l_n) \xrightarrow{P} l$  where  $l_1, \ldots, l_n$ denote security levels of the input, l denotes the security level of the output and P denotes a set of permissions that are disabled by the caller. The idea is that permissions are guards to sensitive values. Thus conservatively, one would type the return value of getContactNo as L only if one knows that the permission READ CONTACT is disabled. In BN system, getContactNo admits the following types: 

getContactNo : 
$$L \xrightarrow{P} L$$
 getContactNo :  $L \xrightarrow{\emptyset} H$ 

where  $P = \{\text{READ\_CONTACT}\}$ . When typing a call to *getContactNo* by an app without permissions, the first type of *getContactNo* is used; otherwise the second type is used.

```
String getContactNo(String name) {
   String number;
   if(checkPermission(READ_CONTACT))
      number = ...; // query the phone number
   else number = "";
   return number;
}
```

```
Listing 1 Getting contact info with a permission check.
```

```
String getInfo() {
    String r = "";
    test(p) {
        test(q) r = loc; else r = "";
    } else {
        test(q) r = aid++loc; else r = "";
    }
    return r;
}
```

Listing 2 An example with a non-monotonic policy.

In BN system, each class is assigned a set of permissions, but before these permissions can be exercised, they must be explicitly enabled with an **enable** command. Initially all permissions are disabled by default. The typing judgment in BN system keeps track of the set of permissions (denoted by Q in the rules below) that are disabled at a particular point in the program. The language of BN system also features a command "**test**(P)  $c_1$  **else**  $c_2$ ", which means that if the permissions in the set P are *all enabled*, then the command behaves like  $c_1$ ; otherwise it behaves like  $c_2$ . The typing rules for the *test* command (in a much simplified form) are:

$$(R1) \frac{Q \cap P = \emptyset \quad Q \vdash c_1 : \tau \quad Q \vdash c_2 : \tau}{Q \vdash \mathsf{test}(P) \ c_1 \ \mathsf{else} \ c_2 : \tau} \qquad (R2) \frac{Q \cap P \neq \emptyset \quad Q \vdash c_2 : \tau}{Q \vdash \mathsf{test}(P) \ c_1 \ \mathsf{else} \ c_2 : \tau}$$

where Q is a set of permissions that are disabled. When  $Q \cap P \neq \emptyset$ , then at least one of the permissions in P is disabled, thus one can determine statically that "test(P)" would fail and only the *else* branch would be executed at runtime. This case is reflected in the typing rule R2. When  $Q \cap P = \emptyset$ , there can be two possible runtime scenarios. One scenario is that all permissions in P are enabled, so "test(P)" succeeds and  $c_1$  is executed. The other is that some permissions in P are disabled, but are not accounted for in O. This could happen in BN system due to the way permissions are propagated and/or inherited across different classes, so it could happen that the context in which the program being typed occurs is not authorized to access some permissions in P. As noted in [11], in this case, one cannot determine statically, from the information available in the typing judgment, whether the test 'test(P)' succeeds, so the typing rule R1 conservatively considers typing both branches.

In adapting BN system to Android, we can make some simplifications: permissions of an app are always enabled, and they are static.<sup>1</sup> So in this case, we can assume that  $Q = \emptyset$ , and only the rule R1 is relevant here. However, even with these simplifications, it is still not possible to determine statically whether 'test(P)' would succeed or not, in the context where the program being typed is part of a service that may be called by arbitrary apps, so their permissions cannot be determined statically. So it seems that a straightforward adaptation of BN system to Android would still keep the form of R1. However, R1 is still too strong in some scenarios, where the desired security policy requires the absence of some permissions for the release of sensitive information. We call such a policy a non-monotonic policy, in the sense that, viewing a policy as a function from permission sets to security labels, the possession of more permissions does not equal the ability to acquire more sensitive information. 

2.2

```
<sup>1</sup>Some permissions in Android 6 and above require user approval at runtime, but for the purpose of typing the 'test' command, we make the assumption that these permissions are enabled as well.
```

 2.0

2.2

#### Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

2.0

2.2

For an example of an application for which a non-monotonic policy is desirable, consider for example an application that provides the location information related to a certain advertising ID (in Listing 2), where the latter provides a unique ID for the purpose of anonymizing mobile users to be used for per-sonalized advertising (instead of relying on hardware device IDs such as IMEI numbers). If one can correlate an advertising ID with a unique hardware ID, it will defeat the purpose of the anonymizing service provided by the advertising ID. To prevent that, getInfo returns the location information for an advertising ID only if the caller *does not* have access to the device ID. That is, if the caller of getInfo possess the permission to access the device ID, then the caller should not be able to obtain any informa-tion that contains the location information; so this policy is non-monotonic: a caller with no permissions is allowed to access the sensitive information (location), whereas another caller with more permission is not allowed to access that information.

To simplify the discussion, let us assume that the permissions to access the IMEI number and the location information are denoted by p and q, respectively; and aid denotes a unique advertising ID generated and stored by the app for the purpose of anonymizing user tracking and *loc* denotes the location information. The function getInfo first tests whether the caller has access to the IMEI number. If it does, and if it has access to the location information, then only the location information is returned. If the caller has no access to the IMEI number, but can access the location information, then the combination of the advertising id and the location information aid + loc is returned. In all other cases, the empty string is returned. Let us consider a lattice with four elements ordered as:  $L \leq l_1, l_2 \leq H$ , where  $l_1$ and  $l_2$  are incomparable. We specify that empty string is of type L, loc is of type  $l_1$ , aid is of type  $l_2$ , and the aggregate aid++loc is of type H. Consider the case where the caller has permissions p and q 2.2 and both are (explicitly) enabled. When applying BN system, the desired type of getInfo in this case is ()  $\stackrel{\emptyset}{\longrightarrow} l_1$ . This means that the type of *r* has to be at most  $l_1$ . Since no permissions are disabled, only R1 is applicable to type this program. This, however, will force both branches of test(p) to have the same type. As a result, r has to be typed as H so that all four assignments in the program can be typed.

The issue with the example in Listing 2 is due to the inability to determine statically whether 'test(P)' succeeds, leading to a conservative choice in the rule R1 of assigning the same types to both branches of the test. As a result, BN system cannot precisely capture the non-monotonic security policy in our example above: when the caller has permissions p and q, the desired type of getInfo should be  $l_1$ , which is not necessary larger than the types when the caller has neither p nor q (e.g. the type for the enabled set  $\{q\}$  is H). The choice of R1 taken in [11] appears to be a design decision: they cited in [11] the lack of motivating examples for non-monotonic policies, and suggested that to accommodate such policies one might need to consider a notion of declassification. As we have seen, however, non-monotonic policies can arise naturally in mobile applications. In a study on Android malwares [1], Enck et al. identify several combinations of permissions that are potentially 'dangerous', in the sense that they allow potentially unsafe information flow. An information flow policy that requires the *absence* of such combinations of permissions in information release would obviously be non-monotonic. In general, non-monotonic policies can be required to solve the *aggregation problem* studied in information flow theory [12], where several pieces of low security level information may be pooled together to learn information at a higher security level. 

We therefore designed a more precise type system for information flow under an access control model inspired by the Android framework. Our type system solves the problem of typing non-monotonic policies without resorting to downgrading or declassifying information. The technique we use is to keep information related to both branches of **test** via a *merging* operator on security types. Additionally, there

| is a significant difference between the permission model of Android and that of BN system, where per-<br>missions are propagated across method invocations among apps. In Android, permissions are relevant<br>only during inter-process or inter-component calls and are not inherited along the call chains across<br>apps. As we shall see in Section 2.5, this may give rise to a type of attack which we call "parameter<br>laundering" attack if one adopts a naive typing rule for function calls. The soundness proof for our type<br>system is significantly different from that for BN system due to the difference in permission model and<br>the new merging operator on types in our type system.<br>The contributions of our work are four-fold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <ol> <li>We develop a lightweight type system in which security types are dependent on a permission-based access control mechanism, and prove its soundness with respect to a notion of non-interference (Section 2). A novel feature of the type system is the type merging constructor, used for typing the conditional branch in permission checking, which allows us to model non-monotonic information flow policies.</li> <li>We identify a problem of explicit flow through function calls in the setting where permissions are not propagated during function calls. This problem arises as a byproduct of Android's permission model, which is significantly different from that of JVM, and adopting a standard typing rule for function calls such as the one proposed for Java in [11] would lead to unsoundness. We call this problem the parameter laundering problem and we propose a typing rule for function calls that prevents it.</li> <li>We show that the type inference is decidable for our type system, by reducing it to a constraint solving problem (Section 3).</li> <li>We give a new way to represent our security types as reduced ordered binary decision diagrams, which generalizes boolean functions to functions mapping boolean formula to a multi-value set. We believe the representation will be efficient in practice.</li> </ol> | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 |
| This paper is an extension of [13]. It first extends the security type system with global variables and proves that it is still sound with respect to non-interference <sup>2</sup> (Section 2). It further revises type inference for global variables and contains the main lemmas for its decidability (Section 3). Finally, it also presents a representation for our types (Section 4). The rest of the paper is organized as follows. Section 2 presents our security type system and its properties. Section 3 and Section 4 give the type inference for our security type system and the representation for our types, respectively. Section 5 presents related work. And Section 6 concludes the paper and discusses some future work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>33<br>34                                          |
| 2. A Secure Information Flow Type System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35<br>36                                                                                          |
| In this section, we present the proposed information flow type system. Section 2.1 informally discusses a permission-based access control model, which is an abstraction of the permission mechanism used in Android. Section 2.2 and Section 2.3 give the operational semantics of a simple imperative language that includes permission checking constructs based on the abstract permission model. Section 2.4 and Section 2.5 describe the type system for our language and prove its soundness with respect to a notion of non-interference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37<br>38<br>39<br>40<br>41<br>42<br>43                                                            |
| <sup>2</sup> Due to space constraints, only the main proofs are presented here, and the other proofs, including the proofs for type inference and representation, can be found in the appendix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44<br>45<br>46                                                                                    |

20

21

2.2

23

24

25

35

36 37

44

45

46

1

2

3

4

5

6

7

- conditional branch 13 flow policies. 14 (2) We identify a proble 15 not propagated duri 16 model, which is sig 17 function calls such 18 problem the parame 19
  - prevents it. (3) We show that the ty
  - solving problem (Se
  - (4) We give a new way which generalizes b We believe the repre

26 This paper is an extensi 27 proves that it is still sound 28 for global variables and co 29 a representation for our ty

30 The rest of the paper i 31 properties. Section 3 and 32 sentation for our types, re-33 and discusses some future 34

# 2. A Secure Information

In this section, we prese 38 a permission-based access 39 Android. Section 2.2 and 40 that includes permission of 41 Section 2.5 describe the ty 42 of non-interference. 43

2.0

2.2

# 2.1. A model of permission-based access control

Instead of taking all the language features and the library dependencies of Android apps into account, we focus on the permission model used in inter-component communications within and across apps. Such permissions are used to regulate access to protected resources, such as device id, location information, contact information, etc.

In Android, an app specifies the permissions it needs at the installation time via a manifest file. In recent versions of Android (since Android 6.0, API level 23), some of these permissions need to be granted by users at runtime. But at no point a permission request is allowed if it is not already specified in the manifest. For now, we assume a permission enforcement mechanism that applies to Android versions prior to version 6.0<sup>3</sup>, so it does not account for permission granting at runtime. Runtime permission granting [14] poses some problems in typing non-monotonic policies; we shall come back to this point later in Section 6. 

An Android app may provide services to other apps, or other components within the app itself. Such a service provider may impose permissions on other apps who want to access its services. Communication between apps is implemented through Binder IPC (inter-process communications) [15]. 

In our model, a program can be seen as a highly abstracted version of an app, and the intention is to show how one can reason about information flows in such a service provider when access control is imposed on the calling app. In the following we shall not model explicitly the IPC mechanism of Android, but will instead model it as a function call. Note that this abstraction is practical since it can be achieved by conventional data and control flow analyses, together with the modeling of Android IPC specific APIs. The feasibility has been demonstrated by frameworks like FlowDroid [3], Amandroid [4], 2.2 IccTA[5], etc.<sup>4</sup>

One significant issue that has to be taken into account is that the Android framework does not track IPC call chains between apps and permissions of an app are not propagated to the callee. That is, an app A calling another app B does not grant B the permissions assigned to A. This is different from the traditional type systems such as BN where permissions can potentially propagate along the call stacks. Note however that B can potentially have more permissions than A, leading to a potential privilege escalation, a known weakness in Android permission system [16]. Another consequence of lacking transitivity is that in designing the type system, one must be careful to avoid what we call a "parameter laundering" attack (see Section 2.4). 

2.2. A Language with Permission Checks

As mentioned earlier, we do not model directly all the language features of an Android app, but use a much simplified language to focus on the permission mechanism part. The language is a variant of the language considered in [8], extended with functions and an operator for permission checks.

We model an *app* as a collection of *functions* (*services*), together with a statically assigned permission set. A system, denoted by  $\mathcal{S}$ , consists of a set of apps. We use capital letters A, B, ... to denote apps. A function f defined in an app A is denoted by  $A \cdot f$ , and may be called independently of other functions in

<sup>&</sup>lt;sup>3</sup>To be specific, runtime permission request requires the compatible version specified in the manifest file to be greater than or equal to API level 23, and running OS should be at least Android 6.0.

<sup>&</sup>lt;sup>4</sup>We have also been implementing a permission-dependent information flow analysis tool on top of Amandroid. The basic idea is similar to the one mentioned in this paper, however the focus is improving the precision of information leakage detection rather than non-interference certification.

the same app. The intention is that a function models an application component (i.e., *Activity, Service*,
 *BroadCastReceiver*, and *ContentProvider*) in Android, which may be called from within the same app
 or other apps.

We assume that only one function is executed at a time, so we do not model concurrent executions of apps. We think that in the Android setting, considering sequential behavior only is not overly restrictive. This is because the communication between apps are (mostly) done via IPC. Shared states between apps, which is what contributes to the difficulty in concurrency handling, is mostly absent, apart from the very limited sharing of preferences. In such a setting, each invocation of a service can be treated independently as there is usually no synchronization needed between different invocations. Additionally, we assume functions in a system are not (mutually) recursive, so there is a finite chain of function calls from any given function. The absence of recursion is not a restriction, since our functions are supposed to model communications in Android, which are rarely recursive. We denote with P the finite set containing all permissions in the system. Each app is assigned a static set of permissions drawn from this set. The powerset of **P** is written as  $\mathcal{P}$ .

For simplicity, we consider only programs manipulating *integers*, so the expressions in our language all have the integer type. Boolean values are encoded as 0 (false) and any non-zero values (true). The grammar for expressions is given below:

$$e ::= n \mid x \mid e \text{ op } e$$

where n denotes an integer literal, x denotes a variable, and **op** denotes a binary operation. The commands of the language are given in the following grammar:

$$c ::= x := e \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid c; c$$
$$\mid \text{letvar } x = e \text{ in } c \mid x := \text{call } A.f(\overline{e}) \mid \text{test}(p) c \text{ else } c$$

The first four constructs are respectively assignment, conditional, while-loop and sequential composi-tion. The statement "letvar x = e in c" is a local variable declaration statement. Here x is declared and initialized to e, and its scope is the command c. We require that x does not occur in e. The statement " $x := \operatorname{call} A.f(\overline{e})$ " denotes an assignment whose right hand side is a function call to A.f. The statement "test(p)  $c_1$  else  $c_2$ " checks whether the calling app has permission p: if it does then  $c_1$  is executed, oth-erwise  $c_2$  is executed. This is similar to the **test** construct in BN system, except that we allow testing only one permission at a time. This is a not real restriction since both versions of the test can simulate one another. The set of free variables occurring in an expression e or a command c is defined as follows: 

A function declaration has the following syntax:

$$F ::= A.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{ return } r\} \}$$

2.0

2.2

2.0

2.2

$$fv(A.f(\overline{x})\{\text{init } r=0 \text{ in } \{c; \text{return } r\}\}) = fv(c) \setminus (\{x_i | x_i \in \overline{x}\} \cup \{r\})$$

Given a system S, we call the free variables occurring in S as global variables, i.e., the variables that are neither introduced by **letvar** nor from the variable set  $\{\bar{x}, r\}$  of any function in S. Global variables can be used to model the shared preference between apps. Formally, the global variables of S is defined as follows:

$$gv(\mathcal{S}) = \bigcup_{A \in \mathcal{S}} fv(A) = \bigcup_{A \in \mathcal{S}} \bigcup_{A.f \in A} fv(A.f)$$

The others, i.e., the variables that are either introduced by **letvar** or from the variable set x, r of any function in S, are called local variables. To simplify presentation, we assume that (1) variables in a system are named differently so there are no naming clashes between them; and (2) the variable x in  $x := call A.f(\bar{e})$ is not a global one, since we can encode  $x_g := call A.f(\bar{e})$  as letvar  $x_l = 0$  in  $x_l := call A.f(\bar{e})$ ;  $x_g := x_l$ , where  $x_g$  is a global variable and  $x_l$  is a fresh local variable.

## 2.3. Operational Semantics

Given a system S, we assume that the permission sets assigned to the apps in S are given by a table  $\Theta$ indexed by app names, and function definitions in S are stored in a table FD indexed by function names. An *evaluation environment* is a finite mapping from variables to values (i.e., integers). We denote with *EEnv* the set of evaluation environments. Elements of *EEnv* are ranged over by  $\eta$ . We use the notation  $[x_1 \mapsto v_1, \cdots, x_n \mapsto v_n]$  to denote an evaluation environment mapping variable  $x_i$  to value  $v_i$ ; this will sometimes be abbreviated as  $[\overline{x} \mapsto \overline{v}]$ . The domain of  $\eta = [x_1 \mapsto v_1, \cdots, x_n \mapsto v_n]$  (i.e.,  $\{x_1, \dots, x_n\}$ ) is denoted by  $dom(\eta)$ . Given two environments  $\eta_1$  and  $\eta_2$ , we define  $\eta_1\eta_2$  as an environment  $\eta$  such that  $\eta(x) = \eta_2(x)$  if  $x \in dom(\eta_2)$ , otherwise  $\eta(x) = \eta_1(x)$ . For example,  $\eta[x \mapsto v]$  maps x to v, and y to  $\eta(y)$ for any  $y \in dom(\eta)$  such that  $y \neq x$ . Given a mapping  $\eta$  and a variable x, we write  $\eta - x$  to denote the mapping resulting from removing x from  $dom(\eta)$ . To simplify proofs of various properties, we split the evaluation environment into two parts  $(\eta^G, \eta)$ : one (i.e.,  $\eta^G$ ) for the global variables and the other (i.e.,  $\eta$ ) for the non-global ones, and require that  $dom(\eta^G) = gv(\mathcal{S})$ .

The operational semantics for expressions and commands is given in Fig. 1. The evaluation judgment for expressions has the form  $(\eta^G, \eta) \vdash e \rightsquigarrow v$ , which states that expression *e* evaluates to value *v* when variables in *e* are interpreted in the evaluation environment  $(\eta^G, \eta)$ . We write  $(\eta^G, \eta) \vdash \overline{e} \rightsquigarrow \overline{v}$ , where  $\overline{e} = e_1, \ldots, e_n$  and  $\overline{v} = v_1, \ldots, v_n$  for some *n*, to denote a sequence of judgments  $(\eta^G, \eta) \vdash e_1 \rightsquigarrow v_1, \ldots, (\eta^G, \eta) \vdash e_n \rightsquigarrow v_n$ .

The evaluation judgment for commands takes the form  $(\eta^G, \eta); A; P \vdash c \rightsquigarrow (\eta^G_1, \eta_1)$ , where  $(\eta^G, \eta)$ is an evaluation environment before the execution of the command *c*, and  $(\eta^G_1, \eta_1)$  is the evaluation environment after the execution of *c*. Here *A* refers to the app to which the command *c* belongs. The permission set *P* denotes the *permission context*, i.e., it is the set of permissions of the app which invokes the function of *A* in which the command *c* resides. The caller app may be *A* itself (in which case the permission context will be the same as the permission set of *A*) but more often it is another app in the system.

$$E-VAR-G \underbrace{x \in dom(\eta^G)}_{(\eta^G, \eta) \vdash x \rightsquigarrow \eta^G(x)} \qquad E-LETVAR \underbrace{(\eta^G, \eta) \vdash e \rightsquigarrow v \quad (\eta^G, \eta[x \mapsto v]); A; P \vdash c \rightsquigarrow (\eta^G_1, \eta_1)}_{(\eta^G, \eta); A; P \vdash \text{letvar } x = e \text{ in } c \rightsquigarrow (\eta^G_1, \eta_1 - x)} \overset{4}{_{5}}$$

$$\text{E-ASS-L} \underbrace{ \begin{array}{c} (\eta^{G}, \eta) \vdash e \rightsquigarrow v \quad x \in dom(\eta) \\ \hline (\eta^{G}, \eta); A; P \vdash x := e \rightsquigarrow (\eta^{G}, \eta[x \mapsto v]) \end{array} }_{(\eta^{G}, \eta); A; P \vdash x := e \rightsquigarrow (\eta^{G}[x \mapsto v], \eta) } \\ \text{E-ASS-G} \underbrace{ \begin{array}{c} (\eta^{G}, \eta) \vdash e \rightsquigarrow v \quad x \in dom(\eta^{G}) \\ \hline (\eta^{G}, \eta); A; P \vdash x := e \rightsquigarrow (\eta^{G}[x \mapsto v], \eta) \end{array} }_{(\eta^{G}, \eta); A; P \vdash x := e \rightsquigarrow (\eta^{G}[x \mapsto v], \eta) } \\ \end{array}$$

$$\begin{array}{c} (\eta^{G},\eta) \vdash e \rightsquigarrow v \quad v \neq 0 \\ \text{E-IF-T} \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta_{1}) \\ \hline (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ c_{1} \ \text{else} \ c_{2} \rightsquigarrow (\eta^{G},\eta);A;P \vdash if \ e \ \text{then} \ e \ \text{the} \ e \ \text{the}$$

$$E-WHILE-T = \frac{(\eta^{G}, \eta) \vdash e \rightsquigarrow v \quad v \neq 0 \quad (\eta^{G}, \eta); A; P \vdash c \rightsquigarrow (\eta^{G}_{1}, \eta_{1}) \quad (\eta^{G}_{1}, \eta_{1}); A; P \vdash \text{while } e \text{ do } c \rightsquigarrow (\eta^{G}_{2}, \eta_{2})}{(\eta^{G}, \eta); A; P \vdash \text{while } e \text{ do } c \rightsquigarrow (\eta^{G}_{2}, \eta_{2})}$$

$$15$$

$$16$$

$$17$$

E-WHILE-F 
$$(\eta^G, \eta); A; P \vdash$$
while  $e \text{ do } c \rightsquigarrow (\eta^G, \eta)$  E-SEQ  $(\eta^G, \eta); A; P \vdash c_1; c_2 \rightsquigarrow (\eta^G_2, \eta_2)$  20

$$E-CP-T - \frac{p \in P \quad (\eta^G, \eta); A; P \vdash c_1 \rightsquigarrow (\eta^G_1, \eta_1)}{(\eta^G, \eta); A; P \vdash \mathsf{test}(p) \ c_1 \ \mathsf{else} \ c_2 \rightsquigarrow (\eta^G_1, \eta_1)} \\ E-CP-F - \frac{p \notin P \quad (\eta^G, \eta); A; P \vdash c_2 \rightsquigarrow (\eta^G_1, \eta_1)}{(\eta^G, \eta); A; P \vdash \mathsf{test}(p) \ c_1 \ \mathsf{else} \ c_2 \rightsquigarrow (\eta^G_1, \eta_1)} \\ \frac{23}{24} \\ \frac{24}{24} \\ \frac{24}{2$$

$$FD(B.f) = B.f(\overline{y}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \}$$
  
E-CALL
$$\frac{(\eta^G, \eta) \vdash \overline{e} \rightsquigarrow \overline{v} \quad (\eta^G, [\overline{y} \mapsto \overline{v}, r \mapsto 0]); B; \Theta(A) \vdash c \rightsquigarrow (\eta^G_1, \eta_1)}{(\eta^G, \eta); A; P \vdash x := \text{call } B.f(\overline{e}) \rightsquigarrow (\eta^G_1, \eta[x \mapsto \eta_1(r)])}$$

#### Fig. 1. Evaluation rules for expressions and commands, given a function definition table FD and a permission assignment $\Theta$ .

The operational semantics of most commands are straightforward. We explain the semantics of the test primitive and the function call. Rules (E-CP-T) and (E-CP-F) capture the semantics of the test primitive. These are where the permission context P in the evaluation judgement is used. The semantics of function calls is given by (E-CALL). Notice that c inside the body of callee is executed under the permission context  $\Theta(A)$ , which is the permission set of A. The permission context P in the conclusion of that rule, which denotes the permission of the app that calls A, is not used in the premise. That is, the permission context of A is not inherited by the callee function B.f. This reflects the way permission contexts in Android are passed on during IPCs [15, 17], and is also a major difference between our permission model and that in BN system, where permission contexts are inherited by successive function calls. 

#### 2.4. Security Types

In information flow type systems such as [8], it is common to adopt a lattice structure to encode security levels. Security types in this setting are just security levels. In our case, we generalize the security types to account for the dependency of security levels on permissions. So we shall distinguish security levels, given by a lattice structure which encodes sensitivity levels of information, and security

types, which are mappings from permissions to security levels. We assume the security levels are given

**Definition 2.1** A base security type (or base type) t is a mapping from  $\mathcal{P}$  to  $\mathcal{L}$ . We denote with  $\mathcal{T}$  the

by a lattice  $\mathscr{L}$ , with a partial order  $\leq_{\mathscr{L}}$ . Security types are defined in the following.

2.0

2.2

2.2

set of base types. Given two base types s and t, we say s = t iff s(P) = t(P) for all  $P \in \mathcal{P}$ . We define an ordering  $\leq_{\mathcal{T}}$  on base types as follows:  $s \leq_{\mathcal{T}} t$  iff  $\forall P \in \mathscr{P}, s(P) \leq_{\mathscr{L}} t(P)$ . As we shall see, if a variable is typed by a base type, the sensitivity of its content may depend on the permissions of the app which writes to the variable. In contrast, in traditional information flow type systems, a variable annotated with a security level has a fixed sensitivity level regardless of the permissions of the app that writes to the variable. Next, we show that the set of base types with the order  $\leq_{\mathcal{T}}$  forms a lattice. **Definition 2.2** For  $s, t \in T$ ,  $s \sqcup t$  and  $s \sqcap t$  are defined as  $(s \sqcup t)(P) = s(P) \sqcup t(P), \forall P \in \mathscr{P}$   $(s \sqcap t)(P) = s(P) \sqcap t(P), \forall P \in \mathscr{P}$ **Lemma 2.1**  $\leq_{\mathcal{T}}$  *is a partial order relation on*  $\mathcal{T}$ *.* **Lemma 2.2**  $(\mathcal{T}, \leq_{\mathcal{T}})$  forms a lattice. From now on, we shall drop the subscripts in  $\leq_{\mathscr{L}}$  and  $\leq_{\mathcal{T}}$  when no ambiguity arises. Accordingly, a security level l can be lifted to the base type  $\hat{l}$  that maps all permission sets to level l itself, which we call as a level type. **Definition 2.3** *Given a security level l, we define*  $\hat{l}$  *as follows: for all*  $P \in \mathscr{P}$ *, we have*  $\hat{l}(P) = l$ *.* **Definition 2.4** A function type has the form  $\bar{t} \xrightarrow{s} t$ , where  $\bar{t} = (t_1, \ldots, t_m)$ ,  $m \ge 0$  and  $t, s, t_i$  are base types. The types  $\overline{t}$  are the types for the arguments of the function, t is the return type of the function, and s is the type for the body of the function. In our type system, security types of expressions (commands, functions, resp.) may be altered depending on the execution context. That is, when an expression is used in a context where a permission check has been performed (either successfully or unsuccessfully), its type may be adjusted to take into account the *presence* or *absence* of the checked permission. Such an adjustment is called a *promotion* or a *demotion*. **Definition 2.5** Given a permission p, the promotion and demotion of a base type t with respect to p are:  $(t\uparrow_p)(P) = t(P \cup \{p\}), \forall P \in \mathscr{P} (promotion)$   $(t\downarrow_p)(P) = t(P \setminus \{p\}), \forall P \in \mathscr{P} (demotion)$ The promotion and demotion of a function type  $\bar{t} \xrightarrow{s} t$ , where  $\bar{t} = (t_1, \ldots, t_m)$ , are respectively:  $(\bar{t} \xrightarrow{s} t) \uparrow_p = \bar{t} \uparrow_p \xrightarrow{s\uparrow_p} t \uparrow_p \qquad (\bar{t} \xrightarrow{s} t) \downarrow_p = \bar{t} \downarrow_p \xrightarrow{s\downarrow_p} t \downarrow_p$ where  $\bar{t}\uparrow_p = (t_1\uparrow_p, \ldots, t_m\uparrow_p)$  and  $\bar{t}\downarrow_p = (t_1\downarrow_p, \ldots, t_m\downarrow_p)$ . **Lemma 2.3** Given  $P \in \mathscr{P}$  and  $p \in \mathbf{P}$ , (a)  $(t \uparrow_p)(P) = t(P)$  if  $p \in P$ ; and (b)  $(t \downarrow_p)(P) = t(P)$  if  $p \notin P$ . 2.5. Security Type System We first define a couple of operations on security types and permissions that will be used later.

 $\text{T-VAR-L}\frac{x \in dom(\Gamma)}{(\Gamma^G, \Gamma) \vdash x : \Gamma(x)} \qquad \text{T-VAR-G}\frac{x \in dom(\Gamma^G)}{(\Gamma^G, \Gamma) \vdash x : \Gamma^G(x)} \qquad \text{T-SUB}_e\frac{(\Gamma^G, \Gamma) \vdash e : s \quad s \leqslant t}{(\Gamma^G, \Gamma) \vdash e : t}$  $\text{T-OP}\frac{(\Gamma^G, \Gamma) \vdash e_1 : t \quad (\Gamma^G, \Gamma); A \vdash e_2 : t}{(\Gamma^G, \Gamma) \vdash e_1 \text{ op } e_2 : t} \qquad \text{T-SUB}_c \frac{(\Gamma^G, \Gamma); A \vdash c : s \quad t \leqslant s}{(\Gamma^G, \Gamma); A \vdash c : t}$  $\text{T-ASS-L} \underbrace{x \in dom(\Gamma) \quad (\Gamma^G, \Gamma) \vdash e : \Gamma(x)}_{(\Gamma^G, \Gamma) : A \vdash x := e : \Gamma(x)} \qquad \text{T-ASS-G} \underbrace{x \in dom(\Gamma^G) \quad (\Gamma^G, \Gamma) \vdash e : \Gamma^G(x)}_{(\Gamma^G, \Gamma) : A \vdash x := e : \Gamma^G(x)}$  $T-\text{LETVAR} \frac{(\Gamma^{G}, \Gamma) \vdash e: s \quad (\Gamma^{G}, \Gamma[x:s]); A \vdash c: t}{(\Gamma^{G}, \Gamma) \cdot A \vdash \text{letvar } x = e \text{ in } c: t} \qquad T-\text{SEQ} \frac{(\Gamma^{G}, \Gamma); A \vdash c_{1}: t \quad (\Gamma^{G}, \Gamma); A \vdash c_{2}: t}{(\Gamma^{G}, \Gamma); A \vdash c_{1}: c_{2}: t}$ T-IF  $\frac{(\Gamma^G, \Gamma) \vdash e: t \quad (\Gamma^G, \Gamma); A \vdash c_1: t \quad (\Gamma^G, \Gamma); A \vdash c_2: t}{(\Gamma^G, \Gamma): A \vdash \mathbf{if} \ e \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2: t}$  $\text{T-CP}\frac{(\Gamma^{G}, \Gamma \uparrow_{p}); A \vdash c_{1} : t_{1} \qquad (\Gamma^{G}, \Gamma \downarrow_{p}); A \vdash c_{2} : t_{2}}{(\Gamma^{G}, \Gamma); A \vdash \textbf{test}(p) \ c_{1} \ \textbf{else} \ c_{2} : t_{1} \triangleright_{p} t_{2}} \qquad \text{T-WHILE}\frac{(\Gamma^{G}, \Gamma) \vdash e : t \qquad (\Gamma^{G}, \Gamma); A \vdash c : t}{(\Gamma^{G}, \Gamma); A \vdash \textbf{while} \ e \ \textbf{do} \ c : t}$  $\text{T-CALL} \underbrace{\begin{array}{cc} FT(B.f) = \overline{t} \xrightarrow{s} t' & (\Gamma^G, \Gamma) \vdash \overline{e} : \pi_{\Theta(A)}(\overline{t}) & \pi_{\Theta(A)}(t') \leqslant \Gamma(x) \\ \hline & (\Gamma^G, \Gamma); A \vdash x := \textbf{call } B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s) \end{array}}$  $\mathsf{T-FUN} \underbrace{ (\Gamma^G, [\overline{x} : \overline{t}, r : t']); B \vdash c : s}_{\Gamma^G \vdash B. f(\overline{x}) \{ \mathbf{init} \ r = 0 \ \mathbf{in} \ \{c; \mathbf{return} \ r\} \} : \overline{t} \xrightarrow{s} t'}_{}$ Fig. 2. Typing rules for expressions, commands and functions. A function called by different callers may have different the permission contexts, so we define *type* projection to extract types according to the permission sets of callers. **Definition 2.6** Given  $t \in \mathcal{T}$  and  $P \in \mathcal{P}$ , the projection of t on a permission set P is a security type  $\pi_P(t)$  defined as  $\pi_P(t)(Q) = t(P), \ \forall Q \in \mathscr{P}$ . Type projection of a list of types on P is then written as  $\pi_P((t_1,\ldots,t_n))=(\pi_P(t_1),\ldots,\pi_P(t_n)).$ In order to type the permission check  $test(p) c_1$  else  $c_2$  precisely, we need to construct a type t from the types  $t_1, t_2$  respectively for its two branches  $c_1, c_2$ , such that t acts like  $t_1$  ( $t_2$  resp.) when p is enabled

Definition 2.7 *Given a permission p and two types t*<sub>1</sub> *and t*<sub>2</sub>, *the* merging *of t*<sub>1</sub> *and t*<sub>2</sub> *along p, denoted as t*<sub>1</sub>  $\triangleright_p$  *t*<sub>2</sub>, *is:* 

(disabled resp.).

$$(t_1 \triangleright_p t_2)(P) = \begin{cases} t_1(P) & p \in P \\ t_2(P) & p \notin P \end{cases} \quad \forall P \in \mathscr{P}$$

<sup>44</sup> A *typing environment* is a finite mapping from variables to base types. We use the notation  $[x_1 : t_1, ..., x_n : t_n]$  to enumerate a typing environment with domain  $\{x_1, ..., x_n\}$ . Typing environments are

ranged over by  $\Gamma$ . Given  $\Gamma_1$  and  $\Gamma_2$  such that  $dom(\Gamma_1) \cap dom(\Gamma_2) = \emptyset$ , we write  $\Gamma_1 \Gamma_2$  to denote a typing

2.0

2.2

- environment that is the (disjoint) union of the mappings in  $\Gamma_1$  and  $\Gamma_2$ . Accordingly, we split the typing environment into two parts  $\Gamma^G$  and  $\Gamma$ , where  $\Gamma^G$  denotes the part for the global variables and  $\Gamma$  denotes the other part for the non-global ones. And we also require that  $dom(\Gamma^G) = gv(S)$ . **Definition 2.8** Given a typing environment  $\Gamma$ , its promotion and demotion along p are typing environ-*ments*  $\Gamma \uparrow_p$  *and*  $\Gamma \downarrow_p$ *, such that*  $(\Gamma \uparrow_p)(x) = \Gamma(x) \uparrow_p$  *and*  $(\Gamma \downarrow_p)(x) = \Gamma(x) \downarrow_p$  *for every*  $x \in dom(\Gamma)$ *.* The projection of  $\Gamma$  on  $P \in \mathscr{P}$  is a typing environment  $\pi_P(\Gamma)$  such that  $(\pi_P(\Gamma))(x) = \pi_P(\Gamma(x))$  for each
- $x \in dom(\Gamma)$ .

There are three typing judgments in our type system as explained below. All these judgments are implicitly parameterized by a function type table, FT, which maps all function names to function types, and a mapping  $\Theta$  assigning permission sets to apps.

- Expression typing:  $(\Gamma^G, \Gamma) \vdash e : t$ . This says that under  $(\Gamma^G, \Gamma)$ , the expression e has a base type at most t.
- Command typing:  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ . This means that the command c writes to variables with type at least t, when executed by app A, under the typing environment  $(\Gamma^G, \Gamma)$ .
- Function typing: The typing judgment takes the form:

$$\Gamma^G \vdash B.f(\overline{x})\{$$
init  $r = 0$  in  $\{c;$  return  $r\}\}: \overline{t} \xrightarrow{s} t'$ 

where  $\overline{x} = (x_1, \dots, x_n)$  and  $\overline{t} = (t_1, \dots, t_n)$  for some  $n \ge 0$ . Functions are polymorphic in the permissions of the caller. Intuitively, this means that each caller of the function above with permission set P "sees" the function as having type  $\pi_P(\bar{t}) \xrightarrow{\pi_P(s)} \pi_P(t')$ . That is, if the function is called from another app with permission P, then it expects input of type up to  $\pi_P(\bar{t})$ , a return value of type at most  $\pi_P(t')$ , and the type for the function body at least  $\pi_P(s)$ . 

When proving the soundness of our type system, we need to make sure that the system of apps are well-typed in the following sense: 

**Definition 2.9** Let S be a system, and let FD, FT, and  $\Theta$  be its function declaration table, function type table, and permission assignments. We say S is well-typed under a global typing environment  $\Gamma^G$  iff for every function A.f,  $\Gamma^G \vdash FD(A.f) : FT(A.f)$  is derivable. 

The typing rules are given in Fig. 2. Most of them are common to information flow type systems [8, 9, 11] except for T-CP and T-CALL. Note that the types for constants depend on the constants themselves. Taking *loc* and *aid* in Section 1 for example, their types are respectively  $l_1$  and  $l_2$ . Also note that in the subtyping rule for commands (T-SUB<sub>c</sub>), the security type of the effect of the command can be safely downgraded, since typing for commands keeps track of a lower bound of the write effects of the command. This typing rule for command is standard, see, e.g., [8] for a more detailed discussion.

In T-CP, to type statement  $test(p) c_1$  else  $c_2$ , we type  $c_1$  in a promoted typing environment for a successful permission check on p, and  $c_2$  in a demoted typing environment for a failed permission check on p. The challenge is how to combine the types of the two premises to obtain the type for the conclusion. One possibility is to force the type of the two premises and the conclusion to be identical (i.e., treat permission check the same as other if-then-else statements and apply T-IF). This, as we have seen in Section 1, leads to a loss in precision of the type for **test** construct. Instead, we consider a more refined *merged* type  $t_1 \triangleright_p t_2$  for the conclusion, where  $t_1$  ( $t_2$  resp.) is the type of the left (right resp.) premise. 

In T-CALL, the callee function B.f is assumed to be type checked under the global typing environment  $\Gamma^{G}$  beforehand and its type is given in the FT table. Here the function B.f is called by A so the type of B.f as seen by A should be a projection of the type given in FT(B, f) on the permissions of A (given by  $\Theta(A)$ :  $\pi_{\Theta(A)}(\bar{t}) \xrightarrow{\pi_{\Theta(A)}(s)} \pi_{\Theta(A)}(t')$ . Therefore the arguments for the function call should be typed as  $\Gamma \vdash \overline{e} : \pi_{\Theta(A)}(\overline{t})$  and the return type (as viewed by A) should be dominated by the type of x, i.e.,  $\pi_{\Theta(A)}(t') \leq \Gamma(x)$ . Finally, the projection of the body type, i.e., the effect of the function call by A, should be propagated to the result type: one can think this is the sequential composition of the function body and the assignment. Due to global variables, we need to accumulate the type (i.e., effects) of the commands in the function body that involves global variables. But to make our presentation simple, we do not separate them from local ones. In addition, note that the execution of a function call depends on the permissions of the caller, but this does not mean the permissions of the caller is passed to the callee.

Attack on global variables. We require that the type of a global variable should be invariant for all permission sets, that is, the global typing environment  $\Gamma^G$  is form of  $[x_1 : \hat{l}_1, \dots, x_n : \hat{l}_n]$ , where  $x_i$  is a global variable,  $l_i$  is a security level. The reason is that different from non-global variables, there is only one copy for global variables. In other words, all the apps share this unique evaluation environment  $\eta^G$  of global variables (e.g., such as the shared preference files), which could easily lead to information leaks via global variables. For example, consider a global variable x with a non-constant type, e.g.,  $t_x = \{\emptyset \mapsto L, \{p\} \mapsto H\}$ , and two apps A, B satisfying that A has permission p to access some security information but B does not. Suppose that A would like to get the security information and store in x. As A has p, when running on A, the type for x is  $\hat{H}$ . Therefore, the behavior of A is typeable. Consider another situation that B would like to get information from x and store in any variable typed of L. Similarly, it is easy to check that the behavior of B is typeable as well. However, if the behavior of A happens before the behavior of B, then there is an information leak, but the whole system is typeable according to the discussion above.

<sup>30</sup> **Parameter laundering.** It is essential that in Rule T-CALL, the arguments  $\overline{e}$  and the return value of <sup>31</sup> the function call are typed according to the projection of  $\overline{t}$  and t' on  $\Theta(A)$ . If they are instead typed with <sup>32</sup>  $\overline{t}$ , then there is a potential implicit flow via a "parameter laundering" attack. To see why, consider the <sup>33</sup> following alternative to T-CALL:

T-CALL'
$$\frac{FT(B.f) = \overline{t} \xrightarrow{s} t' \quad (\Gamma^G, \Gamma) \vdash \overline{e} : \overline{t} \quad t' \leq \Gamma(x)}{(\Gamma^G, \Gamma); A \vdash x := \textbf{call } B.f(\overline{e}) : \Gamma(x) \sqcap s}$$

<sup>38</sup> Notice that the type of the argument  $\overline{e}$  must match the type of the formal parameter of the function *B.f.* <sup>39</sup> This is essentially what is adopted in BN system for method calls [11].

Let us consider the example in Listing 3. Let  $\mathbf{P} = \{p\}$  and *t* be the base type  $t = \{\emptyset \mapsto L, \{p\} \mapsto H\}$ , where *L* and *H* are bottom and top levels respectively. Here we assume *P\_INFO* is a sensitive value of security level *H* that needs to be protected, so function *C.getsecret* is required to have type ()  $\stackrel{t}{\rightarrow} t$ . That is, only apps that have the required permission *p* may obtain the secret value. Suppose the permissions assigned to the apps are given by:  $\Theta(A) = \Theta(B) = \emptyset, \Theta(C) = \Theta(M) = \{p\}$ . As no global variables occur here, we omit the global environment  $\Gamma^G$ . 2.0

2.2

2.0

2.2

```
A. f (x) { //A does not have permission p
   init r = 0 in {
      r := call B.g(x);
      return r
    }
B.g(x) { // B does not have permission p
   init r = 0 in {
       test(p) r := 0 else r := x;
      return r
    }
C.getsecret() { // C has permission p
   init r = 0 in {
     test(p) r := P_{INFO} else r := 0;
     return r
   }
M. main () { // M has permission p
   init r = 0 in {
     letvar x_H = 0 in
     {
       x_H := C.getsecret();
         \mathbf{r} := \mathbf{call} \mathbf{A} \cdot \mathbf{f}(x_H)
     };
     return r
   }
}
```

Listing 3 An example for parameter laundering issue.

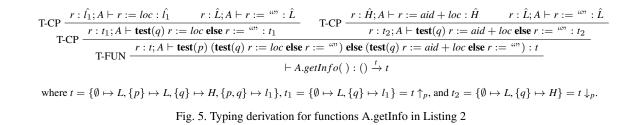
If we were to adopt the modified T-CALL' instead of T-CALL, then we can assign the following types to the above functions:

$$FT := \{A.f \mapsto t \xrightarrow{\hat{L}} \hat{L}; \quad B.g \mapsto t \xrightarrow{\hat{L}} \hat{L}; \quad C.getsecret \mapsto () \xrightarrow{t} t; \quad M.main \mapsto () \xrightarrow{\hat{L}} \hat{L}\}$$

Notice that the return type of *M.main* is  $\hat{L}$  despite having a return value that contains sensitive value  $P_{INFO}$ . If we were to use T-CALL' in place of T-CALL, the above functions can be typed as shown in Fig. 3. Finally, still assuming T-CALL', a partial typing derivation for *M.main* is given in Fig. 4.

As shown in Fig. 3, B.g can be given type  $t \stackrel{L}{\to} \hat{L}$ . Intuitively, it checks that the caller has permission p. If it does, then B.g returns 0 (non-sensitive), otherwise it returns the argument of the function (i.e., x). This is as expected and is sound, under the assumption that the security level of the content of x is dependent on the permissions of the caller. If the caller of B g is the original creator of the content of x, then the assumption is trivially satisfied. The situation gets a bit tricky when the caller simply passes on the content it receives from another app to x. In our example, app A makes a call to B.g. and passes on the value of x it receives. In the run where A.f is called from M.main, the value of x is actually sensitive since it requires the permission p to acquire. However, when it goes through A.f to B.g, the value of x is perceived as *non-sensitive* by B, since the caller in this case (A) has no permissions. The use of the intermediary A in this case in effect launders the permissions associated with x. Therefore, if the rule T-CALL' is used in place of T-CALL, the call chain from *M.main* to *A.f* and finally to *B.g* can all be typed. This is correct in a setting where permissions are *propagated* along with calling context (e.g., 

2.2


[11]) however it is incorrect in the Android permission model 2.1. To avoid the parameter laundering problem, our approach is to make sure that an app may only pass an argument to another function if the app itself is authorized to access the content of the argument in the first place, as formalized in the rule T-CALL.  $\begin{array}{l} \text{T-CALL'} \quad \frac{FT(B.g) = t \stackrel{\hat{L}}{\to} \hat{L} \qquad x:t,r:\hat{L} \vdash x:t \qquad \hat{L} \leqslant t}{x:t,r:\hat{L}; A \vdash r:= \textbf{call } B.g(x):\hat{L} \sqcap \hat{L} = \hat{L}} \\ \text{T-FUN} \quad \frac{}{\vdash A.f(x) \{\textbf{init } r=0 \textbf{ in } \{r:= \textbf{call } B.g(x); \textbf{return } r\}\}:t \stackrel{\hat{L}}{\to} \hat{L}} \end{array}$  $\begin{array}{l} \text{T-CP} & \frac{x:t\uparrow_p,r:\hat{L}\uparrow_p;B\vdash r:=0:\hat{L} \qquad x:t\downarrow_p,r:\hat{L}\downarrow_p;B\vdash r:=x:\hat{L}}{x:t,r:\hat{L};B\vdash \textbf{test}(p)\ r:=0\ \textbf{else}\ r:=x:\hat{L}\succ_p\ \hat{L}}\\ \text{T-FUN} & \frac{f\mapsto B.g(x)\{\textbf{init}\ r=0\ \textbf{in}\ \{\textbf{test}(p)\ r:=0\ \textbf{else}\ r:=x; \textbf{return}\ r\}\}:t\xrightarrow{\hat{L}}\hat{L}}{f\mapsto \hat{L}} \end{array}$ Note that  $t \uparrow_p = \hat{H}, t \downarrow_p = \hat{L} = \hat{L} \downarrow = \hat{L} \uparrow$  and  $\hat{L} \triangleright_p \hat{L} = \hat{L}$ .  $\text{T-FUN} \frac{r:t\uparrow_p; C\vdash r:=\text{SECRET}:\hat{H} \qquad r:t\downarrow_p; C\vdash r:=0:\hat{L}}{r:t; C\vdash \text{test}(p) \ r:=\text{SECRET} \ \text{else} \ r:=0:\hat{H}\triangleright_p \hat{L}}$  $\frac{F-CP}{\vdash C.getsecret()\{\text{init} \ r=0 \ \text{in} \ \{\text{test}(p) \ r:=\text{SECRET} \ \text{else} \ r:=0; \text{return} \ r\}\}:() \xrightarrow{t} t}$ 2.0 Note that  $\hat{H} \triangleright_n \hat{L} = t$ . 2.2 2.2 Fig. 3. Typing derivations for functions A.f, B.g and C.getsecret T-LETVAR  $\frac{r:\hat{L}\vdash 0:t}{T\text{-FUN}} \frac{\text{T-SEQ}}{r:\hat{L}, x_H:t; M\vdash x_H:= \text{call } C.getsecret():\hat{L}} \qquad \Gamma; M\vdash r:= \text{call } A.f(x_H):\hat{L}}{r:\hat{L}, x_H:t; M\vdash x_H:= \text{call } C.getsecret(); r:= \text{call } A.f(x_H):\hat{L}}$  $\vdash M.main(): () \xrightarrow{\hat{L}} \hat{L}$ where  $\Gamma = \{r : \hat{L}, x_H : t\}$  and the second and the third leaves are derived, respectively, as follows: T-CALL'  $\frac{FT(C.getsecret) = () \xrightarrow{t} t \quad \Gamma \vdash () : () \quad t \leq \Gamma(x_H) = t}{T\text{-SUB}_c \frac{\Gamma; M \vdash x_H := \textbf{call } C.getsecret() : t \sqcap t = t}{\Gamma; M \vdash x_H := \textbf{call } C.getsecret() : \hat{L}}$ T-CALL'  $\frac{FT(A.f) = t \to \hat{L} \hat{L} \qquad \Gamma \vdash x_H : t \qquad \hat{L} \leqslant \Gamma(r) = \hat{L}}{\Gamma; M \vdash r := \textbf{call } A.f(x_H) : \hat{L} \sqcap \hat{L} = \hat{L}}$ Fig. 4. A typing derivation for function M.main With the correct typing rule for function calls, the function A.f cannot be assigned type  $t \to \hat{L}$ , since that would require the instance of T-CALL (i.e., when making the call to B.g) in this case to satisfy the constraint  $x: t, r: \hat{L} \vdash x: \pi_{\Theta(A)}(t)$ , where  $\pi_{\Theta(A)}(t) = \hat{L}$ , which is impossible since  $t \notin \hat{L}$ . What this means is essentially that in our type system, information received by an app A from the parameters 

2.2

cannot be propagated by *A* to another app *B*, unless *A* is already authorized to access the information contained in the parameter. Note that this only restricts the propagation of such parameters to other apps; the app *A* can process the information internally without necessarily violating the typing constraints.

Finally, the reader may check that if we fix the type of *B.g* to  $t \xrightarrow{\hat{L}} \hat{L}$  then *A.f* can only be assigned type  $\hat{L} \xrightarrow{\hat{L}} \hat{L}$ . In no circumstances can *M.main* be typed, since the statement  $x_H := C.getsecret()$  forces  $x_H$  to have type  $\hat{H}$ , and thus cannot be passed to *A.f* as an argument.

**Non-monotonic example.** Let us consider the example about non-monotonic policy, that is, the function *getInfo* in Listing 2. Thanks to the rule T-CP, our system is able to capture the non-monotonic policy, so that the function *getInfo* can be precisely typed in our system, whose typing derivation is given in Fig. 5, where  $\Gamma^G$  is omitted for simplicity.



#### 2.6. Noninterference and Soundness

We first define an *indistinguishability* relation between evaluation environments. Such a definition typically assumes an observer who may observe values of variables at a certain security level. In the non-dependent setting, the security level of the observer is fixed, say at  $l_0$ , and valuations of variables at level  $l_0$  or below are required to be identical. In our setting, the security level of a variable in a function can vary depending on the permissions of the caller app (which may be the observer itself), so it may seem more natural to define indistinguishability in terms of the permission set assigned to the caller app. However, we argue that such a definition is subsumed by the more traditional definition that is based on the security level of the observer. Assuming that the observer app is assigned a permission set P. then given two variables x : t and y : t', the level of information that the observer can access through x and y is at most  $t(P) \sqcup t'(P)$ . In general the least upper bound of the security level that an observer with permission P has access to can be computed from the least upper bound of projections (along P) of the types of variables and the return types of functions in the system. In the following definition of indistinguishability, we simply assume that such an upper bound has been computed, and we will not refer explicitly to the permission set of the observer from which this upper bound is derived. 

**Definition 2.10** *Given two evaluation environments*  $\eta$ ,  $\eta'$ , *a typing environment*  $\Gamma$ , *a security level*  $l_0 \in \mathscr{L}$  of the observer, the indistinguishability relation  $=_{\Gamma}^{l_0}$  *is defined as:* 

$$\eta = {}^{l_0}_{\Gamma} \eta' \text{ iff. } \forall x \in dom(\Gamma). \ \left(\Gamma(x) \leqslant \hat{l_0} \Rightarrow \eta(x) = \eta'(x)\right)$$

where  $\eta(x) = \eta'(x)$  holds iff both sides of the equation are defined and equal, or both sides are undefined.

<sup>43</sup> Note that in Definition 2.10,  $\eta$  and  $\eta'$  may not have the same domain, but they must agree on their <sup>44</sup> valuations for the variables in the domain of  $\Gamma$ . Note also that since base types are functions from <sup>45</sup> permissions to security level, the security level  $l_O$  needs to be lifted to a base type in the comparison

 $\Gamma(x) \leq l_0$ . The latter implies that  $\Gamma(x)(P) \leq l_0$  (in the latice  $\mathscr{L}$ ) for every permission set P. If the base type of each variable assigns the same security level to every permission set (i.e., the security level is independent of the permissions), then our notion of indistinguishability coincides with the standard definition for the non-dependent setting. 

**Lemma 2.4**  $=_{\Gamma}^{lo}$  is an equivalence relation on EEnv. 

Recall that we assume no (mutual) recursions, so every function call chain in a well-typed system is finite; this is formalized via the rank function below. We will use this as a measure in our soundness proof (Lemma 2.9).

$$\begin{aligned} \mathbf{r}(\mathbf{if} \ e \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2) &= max(\mathbf{r}(c_1), \mathbf{r}(c_2)) & \mathbf{r}(x := e) = 0 \\ \mathbf{r}(c_1; c_2) &= max(\mathbf{r}(c_1), \mathbf{r}(c_2)) & \mathbf{r}(\mathbf{while} \ e \ \mathbf{do} \ c) = \mathbf{r}(c) \\ \mathbf{r}(\mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2) &= max(\mathbf{r}(c_1), \mathbf{r}(c_2)) & \mathbf{r}(\mathbf{letvar} \ x = e \ \mathbf{in} \ c) = \mathbf{r}(c) \\ \mathbf{r}(x := \mathbf{call} \ A.f(\overline{e})) &= \mathbf{r}(FD(A.f)) + 1 & \mathbf{r}(A.f(\overline{x})\{\mathbf{init} \ r = 0 \ \mathbf{in} \ \{c; \mathbf{return} \ r\}\}) = \mathbf{r}(c) \end{aligned}$$

The next two lemmas relate projection, promotion/demotion and the indistinguishability relation. **Lemma 2.5** If  $p \in P$ , then  $\eta = \stackrel{l_0}{\pi_P(\Gamma)} \eta'$  iff  $\eta = \stackrel{l_0}{\pi_P(\Gamma \uparrow_P)} \eta'$ .

**Lemma 2.6** If 
$$p \notin P$$
, then  $\eta = {}^{l_0}_{\pi_P(\Gamma)} \eta' \iff \eta = {}^{l_0}_{\pi_P(\Gamma \downarrow_p)} \eta'$ 

The key to the soundness proof is the following two lemmas, which are the analogs to the simple security property and the confinement property in [8]. 

Lemma 2.7 Suppose 
$$(\Gamma^G, \Gamma) \vdash e : t$$
. For  $P \in \mathscr{P}$ , if  $t(P) \leq l_O$  and  $\eta_1 = {}^{l_O}_{\pi_P(\Gamma)} \eta_2$ ,  $\eta_1^G = {}^{l_O}_{\Gamma^G} \eta_2^G$ ,  $(\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1$  and  $(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v_2$ , then  $v_1 = v_2$ .

**Proof.** The proof proceeds by induction on the derivation of  $(\Gamma^G, \Gamma) \vdash e : t$ . 

**T-VAR-L** We have  $(\Gamma^G, \Gamma) \vdash x : \Gamma(x) = t$  and x is non-global. Since  $t(P) \leq l_0$  and  $\eta_1 = \frac{l_0}{\pi n(\Gamma)} \eta_2$ , it is deducible that  $v_1 = \eta_1(x) = \eta_2(x) = v_2$ . **T-VAR-G** We have  $(\Gamma^G, \Gamma) \vdash x : \Gamma^G(x) = t$  and x is global. Since  $t(P) \leq l_0$  and  $\Gamma^G(x)$  is invariant for 

all permission sets, we have  $\Gamma^G(x) \leq \hat{l}_O$ . Then from  $\eta_1^G = \mathcal{I}_{\Gamma^G}^{l_O} \eta_2^G$ , we get  $v_1 = \eta_1^G(x) = \eta_2^G(x) = v_2$ . **T-OP** We have the typing derivation

$$\frac{(\Gamma^G, \Gamma) \vdash e_1 : t \quad (\Gamma^G, \Gamma) \vdash e_2 : t}{(\Gamma^G, \Gamma) \vdash e_1 \text{ op } e_2 : t}$$

and the evaluations

By induction on  $e_i$ , we can get  $v_{1i} = v_{2i}$ . Therefore  $v_1 = v_2$ . **T-SUB** $_e$  we have

$$\frac{(\Gamma^G, \Gamma) \vdash e: s \quad s \leqslant t}{(\Gamma^G, \Gamma) \vdash e: t}$$

since  $s(P) \leq t(P)$  and  $t(P) \leq l_0$ , then  $s(P) \leq l_0$  as well, thus the result follows by induction on  $(\Gamma^G, \Gamma) \vdash e : s.$ 

2.2

**Lemma 2.8** Suppose  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ . Then for any  $P \in \mathscr{P}$ , if  $t(P) \nleq l_0$  and  $(\eta^G, \eta)$ ;  $A; P \vdash c \rightsquigarrow (\eta^G_1, \eta_1)$ , then  $\eta = {}^{l_0}_{\pi_P(\Gamma)} \eta_1$  and  $\eta^G = {}^{l_0}_{\Gamma^G} \eta^G_1$ .

**Proof.** By induction on the derivation of  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ , with subinduction on the derivation of

2.2

  $(\eta^G, \eta); A; P \vdash c \rightsquigarrow (\eta_1^G, \eta_1).$ **T-ASS-L** In this case x is non-global,  $t = \Gamma(x)$  and the typing derivation has the form:  $\frac{(\Gamma^G, \Gamma) \vdash e : \Gamma(x)}{(\Gamma^G, \Gamma) : A \vdash x := e : \Gamma(x)}$ and the evaluation under  $(\eta^G, \eta)$  takes the form:  $\frac{(\eta^G, \eta) \vdash e \rightsquigarrow v}{(\eta^G, \eta); A; P \vdash x := e \rightsquigarrow (\eta^G, \eta[x \mapsto v])}$ That is,  $\eta_1 = \eta[x \mapsto v]$  and  $\eta_1^G = \eta^G$ . So  $\eta$  and  $\eta_1$  differ possibly only in the mapping of x. Since  $\Gamma(x)(P) = t(P) \leq l_0$ , that is  $\pi_P(\Gamma)(x) \leq \hat{l_0}$ , the difference in the valuation of x is not observable at level  $l_0$ . It then follows from Definition 2.10 that  $\eta = \frac{l_0}{\pi_P(\Gamma)} \eta_1$ . **T-ASS-G** In this case x is global,  $t = \Gamma^G(x)$  and the typing derivation has the form:  $\frac{(\Gamma^G, \Gamma) \vdash e : \Gamma^G(x)}{(\Gamma^G, \Gamma) : A \vdash x := e : \Gamma^G(x)}$ and the evaluation under  $(\eta^G, \eta)$  takes the form:  $\frac{(\eta^G, \eta) \vdash e \rightsquigarrow v}{(\eta^G, \eta); A; P \vdash x := e \rightsquigarrow (\eta^G[x \mapsto v], \eta)}$ That is,  $\eta_1 = \eta$  and  $\eta_1^G = \eta^G[x \mapsto v]$ . So  $\eta^G$  and  $\eta_1^G$  differ possibly only in the mapping of x. Since  $\Gamma^G(x)(P) = t(P) \leq l_0$  and  $\Gamma^G(x)$  is invariant for all permission sets, we have  $\Gamma^G(x) \leq \hat{l_0}$ . Then the difference in the valuation of x is not observable at level  $l_0$ . It then follows from Definition 2.10 that  $\eta^G =_{\Gamma^G}^{l_O} \eta_1^G$ . **T-CALL** In this case c has the form  $x := \text{call } B.f(\overline{e})$  and the typing derivation takes the form:  $(\Gamma^{G}, \Gamma) \vdash \overline{e} : \pi_{\Theta(A)}(\overline{s}) \qquad FT(B.f) = \overline{s} \xrightarrow{s_{b}} s' \qquad \pi_{\Theta(A)}(s') \leqslant \Gamma(x)$  $(\Gamma^{G}, \Gamma); A \vdash x := \mathbf{call} \ B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s_{b})$ and we have that  $t = \Gamma(x) \sqcap \pi_{\Theta(A)}(s_b)$ . The evaluation under  $(\eta^G, \eta)$  is derived as follows:  $FD(B.f) = B.f(\overline{y}) \{ \text{init } r = 0 \text{ in } \{c_1; \text{ return } r\} \}$   $(\eta^G, \eta) \vdash \overline{e} \rightsquigarrow \overline{y}$ (**T**<sub>1</sub>)  $(\eta^G, [\overline{y} \mapsto \overline{v}, r \mapsto 0]); B; \Theta(A) \vdash c_1 \rightsquigarrow (\eta^G_2, \eta_2)$  $(\eta^G, \eta); A; P \vdash x :=$ **call**  $B.f(\overline{e}) \rightsquigarrow (\eta^G_2, \eta[x \mapsto \eta_2(r)])$ 

2.2

| where $\eta_1 = \eta[x \mapsto \eta_2(r)]$ and $\eta_1^G = \eta_2^G$ . Since $t(P) \leq l_0$ , we have $\Gamma(x)(P) \leq l_0$ and therefore $\Gamma(x) \leq l_0$ and $\eta = \frac{l_0}{\pi_P(\Gamma)} \eta[x \mapsto \eta_2(r)]$ , that is, $\eta = \frac{l_0}{\pi_P(\Gamma)} \eta_1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| The remaining is to prove $\eta^G = \frac{l_O}{\Gamma^G} \eta_1^G$ . As we consider only well-typed systems, the function $FD(B.f)$ is also typable under $\Gamma^G$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $\frac{(\mathbf{T}_2) \ (\Gamma^G, [\overline{y} : \overline{s}, r : s']); B \vdash c_1 : s_b}{\Gamma^G \vdash B.f(\overline{y}) \{ \mathbf{init} \ r = 0 \ \mathbf{in} \ \{c_1; \mathbf{return} \ r\} \} : \overline{s} \xrightarrow{s_b} s'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| From $t(P) \nleq l_0$ , we also deduce $\pi_{\Theta(A)}(s_b) \not\leq l_0$ . By induction on $(\mathbf{T}_2)$ and $(\mathbf{T}_1)$ , we get $[\overline{y} \mapsto \overline{v}, r \mapsto 0] =_{\pi_{\Theta(A)}([\overline{y}:\overline{s}, r:s'])} \eta_2$ and $\eta^G =_{\Gamma^G}^{l_0} \eta_1^G$ . The latter implies $\eta^G =_{\Gamma^G}^{l_0} \eta_2^G$ .<br>This follows straightforwardly from the induction hypothesis.<br><b>HILE</b> We look at the case where the condition of the while loop evaluates to true, otherwise it is trivial. In this case the typing derivation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| $\frac{(\Gamma^G, \Gamma) \vdash e : t  (\Gamma^G, \Gamma); A \vdash c : t}{(\Gamma^G, \Gamma); A \vdash \mathbf{while} \ e \ \mathbf{do} \ c : t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| and the evaluation derivation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| $(\eta^G,\eta) \vdash e \rightsquigarrow v  v \neq 0 \qquad (\eta^G,\eta); A; P \vdash c \rightsquigarrow (\eta^G_2,\eta_2) \qquad (\eta^G_2,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \vdash (\eta^G_1,\eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \vdash (\eta^G_1,\eta_2); A; P \vdash (\eta^G_1,\eta$ |  |  |  |  |
| $(\eta^G,\eta);A;P\vdash$ while $e$ do $c\rightsquigarrow (\eta^G_1,\eta_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Applying the induction hypothesis (on typing derivation) and the inner induction hypothesis (on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

 $(A \vdash c:t)$ **do** c:tand the ev 2.0  $\begin{array}{l} \eta_2) \quad (\eta_2^G, \eta_2); A; P \vdash \textbf{while } e \textbf{ do } c \rightsquigarrow (\eta_1^G, \eta_1) \stackrel{\text{21}}{\xrightarrow{}} \\ \textbf{do } c \rightsquigarrow (\eta_1^G, \eta_1) & 22 \end{array}$  $(\eta^G,\eta)$  + Applying the induction hypothesis (on typing derivation) and the inner induction hypothesis (on the evaluation derivation) we get  $\eta = \frac{l_o}{\pi_P(\Gamma)} \eta_2$  and  $\eta^G = \frac{l_o}{\Gamma^G} \eta^G_2$ , and then  $\eta_2 = \frac{l_o}{\pi_P(\Gamma)} \eta_1$  and  $\eta^G_2 = \frac{l_o}{\Gamma^G} \eta^G_2$ .  $\eta_1^G$ ; by transitivity of  $=_{\pi_P(\Gamma)}^{l_O}$  the result follows. **T-SEQ** This follows from the induction hypothesis and transitivity of the indistinguishability relation. T-LETVAR This case follows from the induction hypothesis and the fact that we can choose fresh variables for local variables, and that the local variables are not visible outside the scope of letvar. T-CP We have:  $\frac{(\Gamma^G, \Gamma \uparrow_p); A \vdash c_1 : t_1 \qquad (\Gamma^G, \Gamma \downarrow_p); A \vdash c_2 : t_2 \qquad t = t_1 \triangleright_p t_2}{(\Gamma^G, \Gamma); A \vdash \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2 : t}$ There are two possible derivations for the evaluation. In one case, we have  $\frac{p \in P \quad (\eta^G, \eta); A; P \vdash c_1 \rightsquigarrow (\eta^G_1, \eta_1)}{(\eta^G, \eta); A; P \vdash \mathsf{test}(p) \ c_1 \ \mathsf{else} \ c_2 \rightsquigarrow (\eta^G_1, \eta_1)}$ Since  $t(P) \nleq l_0$  and  $p \in P$ , by Definiton 2.7, we have  $t_1(P) \nleq l_0$ . By induction hypothesis, we have  $\eta = {}^{l_0}_{\pi_P(\Gamma \uparrow_p)} \eta_1$  and  $\eta^G = {}^{l_0}_{\Gamma^G} \eta_1^G$ . by Lemma 2.5, we have  $\eta = {}^{l_0}_{\pi_P(\Gamma)} \eta_1$ . The case where  $p \notin P$  can be handled similarly, making use of Lemma 2.6. **T-SUB**<sub>c</sub> Straightforward by induction.  $\square$ 

2.2 

Before we define the notion of non-interference for a system, we need to define what it means for a command to be non-interferent.

**Definition 2.11** A command c executed in app A is said to be non-interferent iff for all  $\eta_1$ ,  $\eta_2$ ,  $\eta_1^G$ ,  $\eta_2^G$ ,  $\Gamma, \Gamma^{G}, P, l_{O}, if \eta_{1} = {}^{l_{O}}_{\pi_{P}(\Gamma)} \eta_{2}, \eta_{1}^{G} = {}^{l_{O}}_{\Gamma^{G}} \eta_{2}^{G}, (\eta_{1}^{G}, \eta_{1}); A; P \vdash c \rightsquigarrow (\eta_{3}^{G}, \eta_{3}) and (\eta_{2}^{G}, \eta_{2}); A; P \vdash c \rightsquigarrow (\eta_{4}^{G}, \eta_{4})$ then  $\eta_3 = {}^{l_O}_{\pi_P(\Gamma)} \eta_4$  and  $\eta_3^G = {}^{l_O}_{\Gamma^G} \eta_4^G$ . 

The main technical lemma is that well-typed commands are non-interferent.

**Lemma 2.9** Suppose  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ , for any  $P \in \mathscr{P}$ , if  $\eta_1 = {}^{l_O}_{\pi_P(\Gamma)} \eta_2$ ,  $\eta_1^G = {}^{l_O}_{\Gamma^G} \eta_2^G (\eta_1^G, \eta_1)$ ;  $A; P \vdash c \rightsquigarrow$  $(\eta_3^G, \eta_3)$ , and  $(\eta_2^G, \eta_2)$ ;  $A; P \vdash c \rightsquigarrow (\eta_4^G, \eta_4)$ , then  $\eta_3 = \frac{l_0}{\pi_P(\Gamma)} \eta_4$  and  $\eta_3^G = \frac{l_0}{\Gamma^G} \eta_4^G$ .

**Proof.** If  $t(P) \leq l_0$ , then according to Lemma 2.8, we have

$$\eta_3 =_{\pi_P(\Gamma)}^{l_0} \eta_1 =_{\pi_P(\Gamma)}^{l_0} \eta_2 =_{\pi_P(\Gamma)}^{l_0} \eta_4$$
 and  $\eta_3^G =_{\eta^G}^{l_0} \eta_1^G =_{\Gamma^G}^{l_0} \eta_2^G =_{\Gamma^G}^{l_0} \eta_4^G$ 

and thus the lemma follows. In the following, we assume that  $t(P) \leq l_0$ . The proof proceeds by induction on **r**(c), with subinduction on the derivations of  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$  and  $(\eta_1^G, \eta_1)$ ; A;  $P \vdash c \rightsquigarrow (\eta_3^G, \eta_3)$ . In the following, we shall omit the superscript  $l_0$  from  $=_{\pi_P(\Gamma)}^{l_0}$  to simplify presentation. 

**T-ASS-L** In this case,  $c \equiv x := e$ , x is non-global, and the typing derivation takes the form:

$$(\Gamma^G, \Gamma) \vdash e : \Gamma(x)$$

2.2

$$(\Gamma^G, \Gamma); A \vdash x := e : \Gamma(x)$$

where  $t = \Gamma(x)$ , and suppose the two executions of c are derived as follows:

So  $\eta_3 = \eta_1[x \mapsto v_1], \eta_4 = \eta_2[x \mapsto v_2], \eta_3^G = \eta_1^G$  and  $\eta_4^G = \eta_2^G$ . Note that  $\eta_3^G =_{\Gamma^G} \eta_4^G$  holds trivially. Let us consider  $\eta_3$  and  $\eta_4$ . As  $t(P) \leq l_0$ , applying Lemma 2.7 to  $(\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1$  and  $(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v_2$  we get  $v_1 = v_2$ , so it then follows that  $\eta_3 =_{\pi_P(\Gamma)} \eta_4$ .

**T-ASS-G** In this case,  $c \equiv x := e$ , x is global, and the typing derivation takes the form:

$$(\Gamma^G, \Gamma) \vdash e : \Gamma^G(x)$$
<sup>34</sup>
<sup>35</sup>

$$(\Gamma^G, \Gamma); A \vdash x := e : \Gamma^G(x)$$

where  $t = \Gamma^{G}(x)$ , and suppose the two executions of *c* are derived as follows:

$$\frac{(\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1}{(\eta_1^G, \eta_1); A; P \vdash x := e \rightsquigarrow (\eta_1^G[x \mapsto v_1], \eta_1)} \qquad \frac{(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v_2}{(\eta_2^G, \eta_2); A; P \vdash x := e \rightsquigarrow (\eta_2^G[x \mapsto v_2], \eta_2)}$$

So  $\eta_3 = \eta_1$ ,  $\eta_4 = \eta_2$ ,  $\eta_3^G = \eta_1^G[x \mapsto v_1]$  and  $\eta_4^G = \eta_2^G[x \mapsto v_2]$ . Note that  $\eta_3 =_{\pi_P(\Gamma)} \eta_4$  holds trivially. Let us consider  $\eta_3^G$  and  $\eta_4^G$ . As  $t(P) \leq l_0$ , applying Lemma 2.7 to  $(\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1$  and  $(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v_2$  we get  $v_1 = v_2$ , so it then follows that  $\eta_3^G =_{\Gamma^G} \eta_4^G$ . 

| -IF In this case $c \equiv \text{if } e \text{ then } c_1 \text{ else } c_2$ and we have                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\Gamma^G, \Gamma) \vdash e: t  (\Gamma^G, \Gamma); A \vdash$                                                                                                                                                                                                                                                                                                                                          | $-c_1:t$ $(\Gamma^G,\Gamma);A \vdash c_2:t$                                                                                                                                                                                                                                       |
| $\frac{(\Gamma^{G}, \Gamma) \vdash e: t  (\Gamma^{G}, \Gamma); A \vdash}{(\Gamma^{G}, \Gamma); A \vdash \mathbf{if} e \mathbf{t}}$                                                                                                                                                                                                                                                                      | hen $c_1$ else $c_2$ : t                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2                                                                                                                                                                                                                                                                               |
| The evaluation derivation under $(\eta_1^G, \eta_1)$ takes eit                                                                                                                                                                                                                                                                                                                                          | her one of the following forms:                                                                                                                                                                                                                                                   |
| $\begin{array}{c} (\eta_1^G, \eta_1) \vdash e \rightsquigarrow v \qquad v \neq 0\\ (\eta_1^G, \eta_1); A; P \vdash c_1 \rightsquigarrow (\eta_3^G, \eta_3)\\ \hline (\eta_1^G, \eta_1); A; P \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 \rightsquigarrow (\eta_3^G, \eta_3) \end{array}$                                                                                                   | $egin{array}{ll} (\eta_1^G,\eta_1)dash e\leadsto v & v=0\ (\eta_1^G,\eta_1); A; Pdash c_2\rightsquigarrow (\eta_3^G,\eta_3) \end{array}$                                                                                                                                          |
| $(\eta_1^G, \eta_1); A; P \vdash$ if $e$ then $c_1$ else $c_2 \rightsquigarrow (\eta_3^G, \eta_3)$                                                                                                                                                                                                                                                                                                      | $(\eta_1^G,\eta_1);A;P\vdash$ if $e$ then $c_1$ else $c_2\rightsquigarrow(n)$                                                                                                                                                                                                     |
| We consider here only the case where $v \neq 0$ ; the                                                                                                                                                                                                                                                                                                                                                   | case with $v = 0$ can be dealt with similarly. W                                                                                                                                                                                                                                  |
| first need to show that the evaluation of $c$ under                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                   |
| suppose $(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v'$ . Since $t(P) \leq l_0$ , we can                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| hence the evaluation of $c$ under $(\eta_2^G, \eta_2)$ takes the                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |
| (-G - ) + (-L - ) + (-L - )                                                                                                                                                                                                                                                                                                                                                                             | $(\mathbf{r} \mathbf{G}, \mathbf{r} \mathbf{r}) \cdot \mathbf{A} \cdot \mathbf{P} = \mathbf{c} \cdot (\mathbf{r} \mathbf{G}, \mathbf{r})$                                                                                                                                         |
| $\frac{(\eta_2^G, \eta_2) \vdash e \rightsquigarrow v'  v' \neq 0}{(\eta_2^G, \eta_2); A; P \vdash \text{if } e \text{ then}}$                                                                                                                                                                                                                                                                          | $(\eta_2^\circ,\eta_2); A; P \vdash c_1 \rightsquigarrow (\eta_4^\circ,\eta_4)$                                                                                                                                                                                                   |
| $(\eta_2^G,\eta_2);A;P\vdash 	ext{if}\ e\ 	ext{then}$                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{n} \ c_1 \ \mathbf{else} \ c_2 \rightsquigarrow (\eta_4^G, \eta_4)$                                                                                                                                                                                                      |
| The lemma then follows straightforwardly from the                                                                                                                                                                                                                                                                                                                                                       | he induction hypothesis                                                                                                                                                                                                                                                           |
| <b>E-WHILE</b> $c \equiv$ while <i>e</i> do $c_b$ and we have                                                                                                                                                                                                                                                                                                                                           | ne madedon nypotnesis.                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |
| $\frac{(\Gamma^{G},\Gamma)\vdash e:t}{(\Gamma^{G},\Gamma);A\vdash \mathbf{w}}$                                                                                                                                                                                                                                                                                                                          | $[\Gamma^G, \Gamma); A \vdash c_b : t$                                                                                                                                                                                                                                            |
| $(\Gamma^G,\Gamma);A\vdash \mathbf{w}$                                                                                                                                                                                                                                                                                                                                                                  | nile $e$ do $c_b : t$                                                                                                                                                                                                                                                             |
| According to Lemma 2.7, if $(\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1$ are then the conclusion holds according to (E-WHIL)                                                                                                                                                                                                                                                                       | E-F). Otherwise, we have                                                                                                                                                                                                                                                          |
| $\begin{array}{c} (\eta_1^G, \eta_1) \vdash e \rightsquigarrow v_1  v_1 \neq 0\\ (\eta_1^G, \eta_1); A; P \vdash c_b \rightsquigarrow (\eta_5^G, \eta_5)\\ \hline (\eta_5^G, \eta_5); A; P \vdash \textbf{while } e \textbf{ do } c_b \rightsquigarrow (\eta_3^G, \eta_3)\\ \hline (\eta_1^G, \eta_1); A; P \vdash \textbf{while } e \textbf{ do } c_b \rightsquigarrow (\eta_3^G, \eta_3) \end{array}$ | $\begin{array}{c} (\eta_2^G, \eta_2) \vdash e \rightsquigarrow v_2  v_2 \neq 0 \\ (\eta_2^G, \eta_2); A; P \vdash c_b \rightsquigarrow (\eta_6^G, \eta_6) \\ (\eta_6^G, \eta_6); A; P \vdash \textbf{while } e \textbf{ do } c_b \rightsquigarrow (\eta_4^G, \eta_4) \end{array}$ |
| $(\eta_1^G,\eta_1);A;P\vdash$ while $e$ do $c_b\rightsquigarrow(\eta_3^G,\eta_3)$                                                                                                                                                                                                                                                                                                                       | $(\eta_2^G, \eta_2); A; P \vdash$ while $e$ do $c_b \rightsquigarrow (\eta_4^G, \eta_4)$                                                                                                                                                                                          |
| Applying the induction hypothesis to $(\Gamma^G, \Gamma); A$                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                   |
| $(\eta_2^G, \eta_2); A; P \vdash c_b \rightsquigarrow (\eta_6^G, \eta_6), \text{ we obtain } \eta_5 =$<br>inner induction hypothesis to $(\eta_5^G, \eta_5); A; P \vdash \mathbf{v}$                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |
| while <i>e</i> do $c_b \rightsquigarrow (\eta_4^G, \eta_4)$ , we obtain $\eta_3 =_{\pi_P(\Gamma)} \eta_4$                                                                                                                                                                                                                                                                                               | and $n_0^G = p_G n_0^G$                                                                                                                                                                                                                                                           |
| <b>ESEQ</b> In this case we have $c \equiv c_1; c_2$ and $(\Gamma^G, \Gamma); A \vdash$                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |
| <b>-LETVAR</b> In this case we have $c \equiv \text{letvar } x = e \text{ in } c$                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |
| esis and the fact that the mapping for the local var                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                 |
| <b>-CALL</b> In this case, c has the form $x := \text{call } B.f(\overline{e})$                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |
| (where we label the premises for ease of reference                                                                                                                                                                                                                                                                                                                                                      | e later):                                                                                                                                                                                                                                                                         |
| $\frac{FT(B.f) = \overline{s} \xrightarrow{s_b} s'  (\mathbf{T}_1) \ (\Gamma^G, \Gamma) \vdash}{(\Gamma^G, \Gamma); A \vdash x := \mathbf{call} \ B.}$                                                                                                                                                                                                                                                  | $\overline{e}: \pi_{\Theta(A)}(\overline{s})  (\mathbf{T_2}) \ \pi_{\Theta(A)}(s') \leqslant \Gamma(x)$                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |

2.2

where  $t = \Gamma(x) \sqcap \pi_{\Theta(A)}(s_b)$ , and the executions under  $(\eta_1^G, \eta_1)$  and  $(\eta_2^G, \eta_2)$  are derived, respec-tively, as follows:  $(\mathbf{E_1}) (\eta_1^G, \eta_1) \vdash \overline{e} \rightsquigarrow \overline{v_1} \qquad (\mathbf{E_2}) (\eta_1^G, [\overline{y} \mapsto \overline{v_1}, r \mapsto 0]); B; \Theta(A) \vdash c_1 \rightsquigarrow (\eta_5^G, \eta_5) \\ (\eta_1^G, \eta_1); A; P \vdash x := \mathbf{call} \ B.f(\overline{e}) \rightsquigarrow (\eta_5^G, \eta_1[x \mapsto \eta_5(r)])$  $(\mathbf{E}'_1) (\eta_2^G, \eta_2) \vdash \overline{e} \rightsquigarrow \overline{v_2} \qquad (\mathbf{E}'_2) (\eta_2^G, [\overline{y} \mapsto \overline{v_2}, r \mapsto 0]); B; \Theta(A) \vdash c_1 \rightsquigarrow (\eta_6^G, \eta_6)$  $(\eta_2^G, \eta_2); A; P \vdash x := \mathbf{call} \ B.f(\overline{e}) \rightsquigarrow (\eta_6^G, \eta_2[x \mapsto \eta_6(r)])$ where  $FD(B.f) = B.f(\bar{x}) \{ \text{init } r = 0 \text{ in } \{c_1; \text{return } r\} \}, \eta_3 = \eta_1[x \mapsto \eta_5(r)], \eta_4 = \eta_2[x \mapsto \eta_5(r)], \eta_5(r) \}$  $\eta_6(r)$ ],  $\eta_3^G = \eta_5^G$  and  $\eta_4^G = \eta_6^G$ . Moreover, since we consider only well-typed systems, the function FD(B, f) is also typable:  $\frac{(\mathbf{T}_{3}) (\Gamma^{G}, [\overline{y} : \overline{s}, r : s']); B \vdash c_{1} : s_{b}}{\Gamma^{G} \vdash B.f(\overline{y}) \{ \text{init } r = 0 \text{ in } \{c_{1}; \text{return } r\} \} : \overline{s} \xrightarrow{s_{b}} s'}$ Let  $\Gamma' = \pi_{\Theta(A)}([\bar{y}:\bar{s},r:s'])$ . We first prove several claims: • Claim 1:  $[\overline{y} \mapsto \overline{v_1}, r \mapsto 0] =_{\Gamma'} [\overline{y} \mapsto \overline{v_2}, r \mapsto 0].$ Proof: Let  $\rho = [\overline{y} \mapsto \overline{v_1}, r \mapsto 0]$  and  $\rho' = [\overline{y} \mapsto \overline{v_2}, r \mapsto 0]$ . We only need to check that the 2.2 two mappings agree on mappings of  $\overline{y}$  that are of type  $\leq \hat{l}_0$ . Suppose  $y_u$  is such a variable, i.e.,  $\Gamma'(y_u) = u \leq \hat{l}_0$ , and suppose  $\rho(y_u) = v_u$  and  $\rho'(y_u) = v'_u$  for some  $y_u \in \bar{y}$ . From (E<sub>1</sub>) we have  $(\eta_1^G, \eta_1) \vdash e_u \rightsquigarrow v_u$  and from  $(\mathbf{E}_2)$  we have  $(\eta_2^G, \eta_2) \vdash e_u \rightsquigarrow v'_u$ , and from  $(\mathbf{T}_1)$  we have  $(\Gamma^G, \Gamma) \vdash e_u : u$ . Since  $u \leq \hat{l}_O$ , applying Lemma 2.7, we get  $v_u = v'_u$ . • Claim 2:  $\eta_5 =_{\Gamma'} \eta_6$  and  $\eta_5^G =_{\Gamma^G} \eta_6^G$ . Proof: From Claim 1, we know that  $[\overline{y} \mapsto \overline{v_1}, r \mapsto 0] =_{\Gamma'} [\overline{y} \mapsto \overline{v_2}, r \mapsto 0].$ If  $s_b(\Theta(A)) \leq l_0$ , similarly, the results follows according to Lemma 2.8. Let us assume  $s_b(\Theta(A)) \leq l_0$ . Since  $\mathbf{r}(c_1) < \mathbf{r}(c)$ , we can apply the outer induction hypothesis to (**E**<sub>2</sub>),  $(\mathbf{E}'_2)$  and  $(\mathbf{T}_3)$  to obtain  $\eta_5 =_{\Gamma'} \eta_6$  and  $\eta_5^G =_{\Gamma^G} \eta_6^G$ . • Claim 3:  $\eta_1[x \mapsto \eta_5(r)] =_{\pi_P(\Gamma)} \eta_2[x \mapsto \eta_6(r)]$ Proof: We first note that if  $\Gamma(x)(P) \leq l_0$ , then x is not observable at level  $l_0$ , and thus the result follows from  $\eta_1 =_{\pi_P(\Gamma)} \eta_2$ . Assume that  $\Gamma(x)(P) \leq l_0$ . From (**T**<sub>2</sub>), we get  $(\pi_{\Theta(A)}(s'))(P) \leq l_0$ . The latter, by Definition 2.6, implies that  $\pi_{\Theta(A)}(s') \leq l_0$ . Since  $r \in dom(\Gamma')$ , it is obvious that  $\eta_5(r) = \eta_6(r)$  From Claim 2. The statement we are trying to prove, i.e.,  $\eta_3 =_{\pi_P(\Gamma)} \eta_4$  and  $\eta_3^G =_{\Gamma^G} \eta_4^G$ , follows immediately from Claim 2 and 3 above. **T-CP**  $c \equiv \text{test}(p) c_1$  else  $c_2$  and we have  $\frac{(\Gamma^G, \Gamma \uparrow_p); A \vdash c_1 : t_1 \qquad (\Gamma^G, \Gamma \downarrow_p); A \vdash c_2 : t_2 \qquad t = t_1 \triangleright_p t_2}{(\Gamma^G, \Gamma); A \vdash \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2 : t}$ We need to consider two cases, one where  $p \in P$  and the other where  $p \notin P$ . 

Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

Assume that  $p \in P$ . Then the evaluation of c under  $(\eta_1^G, \eta_1)$  and  $(\eta_2^G, \eta_2)$  are respectively:  $\frac{p \in P \quad (\eta_1^G, \eta_1); A; P \vdash c_1 \rightsquigarrow (\eta_3^G, \eta_3)}{(\eta_1^G, \eta_1); A; P \vdash \mathsf{test}(p) \ c_1 \ \mathsf{else} \ c_2 \rightsquigarrow (\eta_3^G, \eta_3)} \qquad \frac{p \in P \quad (\eta_2^G, \eta_2); A; P \vdash c_1 \rightsquigarrow (\eta_4^G, \eta_4)}{(\eta_2^G, \eta_2); A; P \vdash \mathsf{test}(p) \ c_1 \ \mathsf{else} \ c_2 \rightsquigarrow (\eta_4^G, \eta_4)}$ since  $p \in P$ , we have  $t_1(P) = t(P) \leq l_0$ . Moreover, since  $\eta_1 =_{\pi_P(\Gamma)} \eta_2$ , by Lemma 2.5, we have  $\eta_1 =_{\pi_P(\Gamma\uparrow_p)} \eta_2$ . Therefore by the induction hypothesis applied to  $c_1$ , we obtain  $\eta_3 =_{\pi_P(\Gamma\uparrow_p)} \eta_4$  and  $\eta_3^G =_{\Gamma^G} \eta_4^G$ . And by Lemma 2.5, we get  $\eta_3 =_{\pi_P(\Gamma)} \eta_4$ . For the case where  $p \notin P$ , we apply a similar reasoning as above, but using Lemma 2.6 in place **Definition 2.12** Let S be a system with the global typing environment  $\Gamma^G$ . A function  $A.f(\overline{x})$ {*init* r = 0 *in* {c; *return* r}}

context. Therefore, to infer a security type for an expression, a command or a function, we need to track the applications of promotions  $\Gamma \uparrow_p$  and demotions  $\Gamma \downarrow_q$  in their typing derivations. To this end, we keep the applications symbolic and collect the promotions and demotions into a sequence. In other words, we treat them as a sequence of promotions  $\uparrow_p$  and demotions  $\downarrow_p$  applied on a typing environment  $\Gamma$ . 

in S with  $FT(A.f) = \overline{t} \xrightarrow{s} t'$  is non-interferent iff. for all  $\eta_1, \eta_2, \eta_1^G, \eta_2^G, P, v, l_0$ , if the following hold:

• 
$$t'(P) \leq l_0$$
,  
•  $\eta_1 =_{\pi_P(\Gamma)}^{l_0} \eta_2$  and  $\eta_1^G =_{\Gamma^G}^{l_0} \eta_2^G$ , where  $\Gamma = [\overline{x} : \overline{t}, r : t']$ ,  
•  $(n_1^G, n_1)$ : A:  $P \vdash c \rightsquigarrow (n_2^G, n_3)$ , and  $(n_2^G, n_2)$ : A:  $P \vdash c \rightsquigarrow (n_4^G, n_4)$ 

$$(\eta_1, \eta_1), \eta_1, \eta_1 \in C$$
  $(\eta_3, \eta_3), und (\eta_2, \eta_2), \eta_1 \in C$   $(\eta_4, \eta_4),$ 

then  $\eta_3(r) = \eta_4(r)$  and  $\eta_3^G = \frac{l_0}{\eta^G} \eta_4^G$ . The system S is non-interferent iff all functions in S are noninterferent.

Theorem 2.1 Well-typed systems are non-interferent.

**Proof.** Follows from Lemma 2.9.  $\Box$ 

# 3. Type Inference

This section describes a decidable inference algorithm for the language in Section 2.2. Section 3.1 firstly rewrites the typing rules (Fig. 2) in the form of permission trace rules (Fig. 6), then reduces the type inference into a constraint solving problem; Section 3.2 provides procedures to solve the generated constraints. 

- 3.1. Constraint Generation

3.1.1. Permission Tracing In an IPC between different apps (components), there may be multiple permission checks in a calling

For example,  $(\Gamma \uparrow_p) \downarrow_q$  can be viewed as an *application* of the sequence  $\uparrow_p \downarrow_q$  on  $\Gamma$ . The sequence of promotions and demotions is called a *permission trace* and denoted by  $\Lambda$ . The grammar of  $\Lambda$  is:

$$\Lambda ::= \oplus p :: \Lambda \mid \ominus p :: \Lambda \mid \epsilon \quad p \in \mathbf{P}$$

and its length, denoted by  $len(\Lambda)$ , is defined as:

$$len(\Lambda) = \begin{cases} 0 & \text{if } \Lambda = \epsilon \\ 1 + len(\Lambda') & \text{if } \Lambda = \odot p :: \Lambda', \odot \in \{\oplus, \ominus\} \end{cases}$$

**Definition 3.1** Given a base type t and a permission trace  $\Lambda$ , the application of  $\Lambda$  to t, denoted by  $t \cdot \Lambda$ , is defined as:

$$t \cdot \Lambda = \begin{cases} t & \text{if } \Lambda = \epsilon \\ (t \uparrow_p) \cdot \Lambda' & \text{if } \exists p, \Lambda', s.t. \ \Lambda = \oplus p :: \Lambda' \\ (t \downarrow_p) \cdot \Lambda' & \text{if } \exists p, \Lambda', s.t. \ \Lambda = \ominus p :: \Lambda' \end{cases}$$

We also extend the application of a permission trace  $\Lambda$  to a typing environment  $\Gamma$  (denoted by  $\Gamma \cdot \Lambda$ ), such that  $\forall x$ .  $(\Gamma \cdot \Lambda)(x) = \Gamma(x) \cdot \Lambda$ . Based on permission traces, we give the definition of *partial* subtyping relation.

**Definition 3.2** *The* partial subtyping relation  $\leq_{\Lambda}$ , which is the subtyping relation applied on the permis-sion trace, is defined as  $s \leq_{\Lambda} t$  iff.  $s \cdot \Lambda \leq t \cdot \Lambda$ . 

The application of permission traces to types preserves the subtyping relation. 

**Lemma 3.1**  $\forall s, t \in \mathcal{T}, s \leq t \implies s \leq_{\Lambda} t \text{ for all } \Lambda.$ 

The following four lemmas discuss the impact of permission checking order on the same or different permissions.

**Lemma 3.2**  $\forall t \in \mathcal{T}, p, q \in \mathbf{P} \text{ s.t. } p \neq q$ ,  $t \cdot (\odot p \circledast q) = t \cdot (\circledast q \odot p)$ , where  $\odot, \circledast, \in \{\oplus, \ominus\}$ .

**Lemma 3.3**  $\forall t \in \mathcal{T}, (t \cdot \odot p) \cdot \Lambda = (t \cdot \Lambda) \cdot \odot p$ , where  $\odot \in \{\oplus, \ominus\}$  and  $p \notin \Lambda$ . 

**Lemma 3.4**  $\forall t \in \mathcal{T}, p \in \mathbf{P}, (t \cdot \otimes p) \cdot \otimes p = t \cdot (\otimes p), where \otimes, \otimes \in \{\oplus, \ominus\}.$ 

**Lemma 3.5**  $\forall t \in \mathcal{T}, (t \cdot \Lambda) \cdot \Lambda = t \cdot \Lambda.$ 

Lemmas 3.2 and 3.3 state that the order of applications of promotions and demotions on *different* permissions does not affect the result, which enables us to solve the constraints in any order (see Sec-tion 3.2). Lemmas 3.4 and 3.5 indicate that only the first application takes effect if there exist several (consecutive) applications of promotions and demotions on the *same* permission p. Therefore, we can safely keep only the first application, by removing the other applications on the same permission. 

Let  $occur(p, \Lambda)$  be the number of occurrences of p in  $\Lambda$ . We say  $\Lambda$  is consistent iff.  $occur(p, \Lambda) \in$  $\{0,1\}$  for all  $p \in \mathbf{P}$ . According to Lemmas 3.4 and 3.5, we can safely assume that all permission traces are consistent; we do so from now on. Moreover, to ensure that the traces collected from the derivations of commands are consistent, we assume that in nested permission checks of a function definition, each permission is checked at most once.

45 Lemma 3.6 
$$\forall s, t \in \mathcal{T}. \forall p \in \mathbf{P}.(s \triangleright_p t) \cdot \Lambda = (s \cdot \Lambda) \triangleright_p (t \cdot \Lambda), where p \notin \Lambda.$$
45

2.0

2.2

syntax-directed typing rules given in Fig. 6, which we call the permission trace rules and mark with a

subscript tr (i.e.,  $\vdash_{tr}$ ). The judgments of the trace rules are similar to those of typing rules, except that

each trace rule is guarded by the permission trace  $\Lambda$  collected from the context, which keeps track of the

adjustments of non-global variables depending on the permission checks, and that the subtyping relation

in the trace rules is the partial subtyping one  $\leq_{\Lambda}$ .

Next, we show the trace rules are sound and complete with respect to the typing rules, that is, an

expression (command, function, resp.) is typeable under the trace rules, if and only if it is typeable under

| the typing rules.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Lemma 3.8</b> (a) If $\Gamma^G$ ; $\Gamma$ ; $\Lambda \vdash_{tr} e : t$ , then $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (t \cdot \Lambda)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (b) If $\Gamma^G$ ; $\Gamma$ ; $\Lambda$ ; $A \vdash_{tr} c : t$ , then $(\Gamma^G, \Gamma \cdot \Lambda)$ ; $A \vdash c : (t \cdot \Lambda)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (c) If $\Gamma^G \vdash_{tr} B.f(\overline{x})\{$ init $r = 0$ in $\{c; return r\}\}: \overline{t} \xrightarrow{s} t'$ , then $\Gamma^G \vdash B.f(\overline{x})\{$ init $r = 0$ in $\{c; return r\}\}: \overline{t} \xrightarrow{s} t'$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Lemma 3.9</b> (a) If $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : t \cdot \Lambda$ , then there exists <i>s</i> such that $\Gamma^G; \Gamma; \Lambda \vdash_{tr} e : s$ and $s \leq_{\Lambda} t$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (b) If $(\Gamma^G, \Gamma \cdot \Lambda)$ ; $A \vdash c : t \cdot \Lambda$ , then there exists $s$ such that $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} c : s$ and $t \leq_{\Lambda} s$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (c) If $\Gamma^G \vdash B.f(\overline{x})\{$ <i>init</i> $r = 0$ <i>in</i> $\{c; return r\}\}: \overline{t} \xrightarrow{s_b} s$ , then $\Gamma^G \vdash_{tr} B.f(\overline{x})\{$ <i>init</i> $r = 0$ <i>in</i> $\{c; return r\}\}: \overline{t} \xrightarrow{s_b} s$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.1.3. Constraint Generation Rules<br>To infer types for functions in System $S$ , we assign a function type $\overline{\alpha} \xrightarrow{\gamma} \beta$ for each function $A.f$ whose type is unknown and a type variable $\gamma_x$ for each variable $x$ with unknown type respectively, where $\overline{\alpha}, \beta, \gamma, \gamma_x$ are fresh type variables. And we mark the type variables for global variables with superscripts.<br>Then according to permission trace rules, we try to build a derivation for each function in $S$ , in which we collect the side conditions ( <i>i.e.</i> , the partial subtyping relation $\leq_{\Lambda}$ ) needed by the rules. If the side conditions hold under a context, then $FD(A.f)$ is typed by $FT(A.f)$ under the same context for each function $A.f$ in $S$ .<br>To describe the side conditions ( <i>i.e.</i> , $\leq_{\Lambda}$ ), we define the permission guarded constraints as follows:                                                                                                     |
| $c ::= (\Lambda, LHS \leq RHS)$<br>$LHS ::= \alpha \mid \alpha^G \mid t_g \mid LHS \sqcup LHS \mid \pi_P(LHS)$<br>$RHS ::= \alpha \mid \alpha^G \mid t_g \mid RHS \sqcap RHS \mid RHS \triangleright_P RHS \mid \pi_P(RHS)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| where $\Lambda$ is a permission trace, $\alpha$ , $\alpha^G$ are fresh type variables for non-global and global variables respectively, and $t_g$ is a ground type.<br>A <i>type substitution</i> is a finite mapping from type variables to security types:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $	heta  ::=  \epsilon \mid lpha \mapsto t, 	heta \mid lpha^G \mapsto \hat{l}, 	heta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Definition 3.3</b> Given a constraint set C and a substitution $\theta$ , we say $\theta$ is a solution to C, denoted by $\theta \models C$ , <i>iff. for each</i> $(\Lambda, t_l \leq t_r) \in C$ , $t_l \theta \leq_{\Lambda} t_r \theta$ holds.<br>The constraint generation rules are presented in Fig. 7, where each rule is marked with a subscript <i>cg</i> $(i.e., \vdash_{cg})$ , and $FT_C$ is the extended function type table such that $FT_C$ maps all function names to function types and their corresponding constraint sets. The judgments of the constraint rules are similar to those of trace rules, except that each rule generates a constraint set <i>C</i> , which consists of the side conditions needed by the typing derivation of $S$ . In addition, as the function call chains starting from a command are finite, the constraint rules are <i>sound</i> and <i>complete</i> with respect to permission trace rules, that is, the constraint set generated by the derivation of an expression (command, function, resp.) under the |

2.2

2.2

Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

 $B.f(x)\{init \ r=0 \ in \ \{c; return \ r\}\}: \overline{\theta(\alpha)} \xrightarrow{\theta(\gamma)} \theta(\beta).$ 

| A. getIn | fo() {                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
| init     | r in { $//\Gamma(r) = \alpha$                                                                                                   |
| t        | <b>est</b> (p) {                                                                                                                |
| İ        | <b>test</b> (q) r = loc; $//(\oplus p \oplus q, \hat{l_1} \leq \alpha)$                                                         |
|          | else r = ""; // $(\oplus p \ominus q, \hat{L} \leq \alpha)$                                                                     |
| }        |                                                                                                                                 |
| J        | test (q) r = aid++loc; $\# (\ominus p \oplus q, \hat{H} \leq a)$                                                                |
|          |                                                                                                                                 |
| 1        | else r = ""; $//(\ominus p \ominus q, \hat{L} \leq \alpha)$                                                                     |
| }        |                                                                                                                                 |
|          | $(\epsilon, \alpha_b \leqslant (\alpha \triangleright_q \alpha) \triangleright_p (\alpha \triangleright_q \alpha))$             |
| r        | eturn r;                                                                                                                        |
| }        |                                                                                                                                 |
| }        | ( (17)                                                                                                                          |
|          | $\{ // B \text{ has permission } q \}$                                                                                          |
|          | r in { $//\Gamma(r) = \beta$                                                                                                    |
| 1        | etvar x = "" in { $\# \Gamma(x) = \gamma, (\epsilon, \hat{L} \leq \gamma)$                                                      |
|          | $\mathbf{test}(\mathbf{p}) \mathbf{r} = 0;  //(\oplus p, \hat{L} \leq \beta)$                                                   |
|          | else x = call A.getInfo();                                                                                                      |
|          | $//FT_C(A.getInfo) = () \xrightarrow{\alpha_b} \alpha,$                                                                         |
|          | $//(\ominus p, \pi_{\Theta(B)}(\alpha) \leq \gamma)$                                                                            |
|          | if $x ==$ "" then $r = 0$ ; $//(\epsilon, \hat{L} \leq \beta)$                                                                  |
|          | else r = 1; $//(\epsilon, \hat{L} \leq \beta), (\epsilon, \gamma \leq \beta \sqcap \beta)$                                      |
| 1        | ense $1 = 1, n(\epsilon, L \leq p), (\epsilon, \gamma \leq p + p)$                                                              |
| }        | $  (\epsilon B_1 \leq (\beta \wedge (\alpha \sqcap \pi_{\sigma(\sigma)}(\alpha_1))) \sqcap (\beta \sqcap \beta)) $              |
|          | $//(\epsilon,\beta_b \leqslant (\beta \triangleright_p (\gamma \sqcap \pi_{\Theta(B)}(\alpha_b))) \sqcap (\beta \sqcap \beta))$ |
|          | eturn r;                                                                                                                        |
|          |                                                                                                                                 |
| ì        |                                                                                                                                 |

Listing 4 The example in Listing 2 in a calling context.

Lemma 3.11 The following statements hold:

(a) If  $\Gamma^G; \Gamma; \Lambda \vdash_{tr} e : t$ , then there exist  $\Gamma_1, \Gamma_1^G, s, C, \theta$  such that  $\Gamma_1^G; \Gamma_1; \Lambda \vdash_{cg} e : s \rightsquigarrow C, \theta \models C,$  $\Gamma_1 \theta = \Gamma, \Gamma_1^G \theta = \Gamma^G \text{ and } s\theta = t.$ 

(b) If  $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} c : t$ , then there exist  $\Gamma_1, \Gamma_1^G, s, C, \theta$  such that  $\Gamma_1^G; \Gamma_1; \Lambda; A \vdash_{cg} c : s \rightsquigarrow C, \theta \models C,$  $\Gamma_1 \theta = \Gamma, \Gamma_1^G = \Gamma^G, and s\theta = t.$ 

(c) If 
$$\Gamma^G \vdash_{tr} B.f(\overline{x})\{\text{init } r = 0 \text{ in } \{c; \text{return } r\}\}: \overline{t_p} \xrightarrow{t_b} t_r$$
, then there exist  $\Gamma_1^G, \overline{\alpha}, \beta, \gamma, C, \theta$  such that  $\Gamma_1^G \vdash_{cg} B.f(\overline{x})\{\text{init } r = 0 \text{ in } \{c; \text{return } r\}\}: \overline{\alpha} \xrightarrow{\gamma} \beta \rightsquigarrow C, \theta \vDash C, \Gamma_1^G \theta = \Gamma^G, \text{ and } (\overline{\alpha} \xrightarrow{\gamma} \beta)\theta = \overline{t_p} \xrightarrow{t_b} t_r$ , where  $\alpha, \beta, \gamma$  are fresh type variables.

Recall the function *getInfo* in Listing 2 and assume that *getInfo* is defined in app A (thus A.getInfo) and called by app B through the function *fun* (thus *B.fun*). The rephrased program is shown in Listing 4, where  $l_1, l_2$  are the types for *loc* and *aid* respectively,  $\Theta(B) = \{q\}$ , and  $l_1 \sqcup l_2 = H$ . Let us apply the constraint generation rules in Fig. 7 on each function, yielding the constraint sets  $C_A$  and  $C_B^5$ 

$$C_{A} = \{ (\oplus p \oplus q, \hat{l}_{1} \leqslant \alpha), (\oplus p \oplus q, \hat{L} \leqslant \alpha), (\oplus p \oplus q, \hat{H} \leqslant \alpha), (\oplus p \oplus q, \hat{L} \leqslant \alpha), (\epsilon, \alpha_{b} \leqslant (\alpha \triangleright_{q} \alpha) \triangleright_{p} (\alpha \triangleright_{q} \alpha)) \}$$

$$C_{B} = \{ (\epsilon, \hat{L} \leqslant \gamma), (\oplus p, \hat{L} \leqslant \beta), (\oplus p, \pi_{\Theta(B)}(\alpha) \leqslant \gamma), (\epsilon, \hat{L} \leqslant \beta), (\epsilon, \gamma \leqslant \beta \sqcap \beta), (\epsilon, \beta_{b} \leqslant (\beta \triangleright_{p} (\gamma \sqcap \pi_{\Theta(B)}(\alpha_{b}))) \sqcap (\beta \sqcap \beta)) \}$$

$$41$$

$$42$$

$$43$$

$$44$$

<sup>5</sup>If we split the types for commands into global ones and non-global ones, we could have simpler constraints.

and the types  $t_A = () \xrightarrow{\alpha_b} \alpha$  and  $t_B = () \xrightarrow{\beta_b} \beta$  for the functions getInfo and fun<sup>6</sup> respectively. Thus, the constraint set  $C_{eg}$  for the whole program is  $C_A \cup C_B$ .

#### 3.2. Constraint Solving

To start with, we present the interpretation and the difference on traces that are needed for constraint solving. A permission trace  $\Lambda$  is a property on permission sets and can be interpreted as a set of permission sets. Formally, the *interpretation* of  $\Lambda$  is

$$\mathcal{I}(\Lambda) = \{ P \mid \forall \oplus p \in \Lambda. \ p \in P \text{ and } \forall \oplus p \in \Lambda. \ p \notin P \}$$

We said a permission trace  $\Lambda$  is *satisfiable*, denoted by  $\Delta(\Lambda)$ , iff.  $\mathcal{I}(\Lambda) \neq \emptyset$ ; and a permission set *P* entails  $\Lambda$ , denoted by  $P \models \Lambda$ , iff.  $P \in \mathcal{I}(\Lambda)$ . We write  $\Lambda_P$  for the permission trace that only *P* can entail (*i.e.*,  $\mathcal{I}(\Lambda_P) = \{P\}$ ). Given two traces  $\Lambda_1, \Lambda_2$ , the *difference* of  $\Lambda_1$  from  $\Lambda_2$ , denoted by  $dif(\Lambda_1, \Lambda_2)$ , is the trace consisting of the promotions and demotions in  $\Lambda_1$  but not in  $\Lambda_2$ . For example,  $dif(\oplus p \ominus q \oplus r, \ominus q \oplus l) = \oplus p \oplus r.$ 

We now present an algorithm for solving the constraints generated by the rules in Fig. 7. For these constraints, both types appearing on the two sides of subtyping are guarded by the same permission trace. But during the process of solving these constraints, new constraints, whose two sides of subtyping are guarded by *different* traces, may be generated. Take the constraint  $(\Lambda, \pi_P(t_l) \leq \pi_O(\alpha))$  for example,  $t_l$  is indeed guarded by  $\Lambda_P$  while  $\alpha$  is guarded by  $\Lambda_Q$ , where P and Q are different permission sets. So for constraint solving, we use a generalized version of the permission guarded constraints, allowing 2.2 types on the two sides to be guarded by different permission traces:  $((\Lambda_l, t_l) \leq (\Lambda_r, t_r))$ , where  $t_l \neq t_r$ . Likewise, a *solution* to a generalized constraint set C is a substitution  $\theta$ , denoted by  $\theta \models C$ , such that for each  $((\Lambda_l, t_l) \leq (\Lambda_r, t_r)) \in C$ ,  $(t_l \theta \cdot \Lambda_l) \leq (t_r \theta \cdot \Lambda_r)$  holds. 

It is easy to transform a permission guarded constraint set C into a generalized constraint set C': by rewriting each  $(\Lambda, t_l \leq t_r)$  as  $((\Lambda, t_l) \leq (\Lambda, t_r))$ . Moreover, it is trivial that  $\theta \models C \iff \theta \models C'$ . Therefore, we focus on solving generalized constraints in the following. For example, the constraint set  $C_{eg}$  can be rewritten as follows, where the first two lines are from  $C_A$  while the last two lines from  $C_B$ : 

$$\begin{split} C_{eg} &= \{ ((\oplus p \oplus q, \hat{l}_1) \leqslant (\oplus p \oplus q, \alpha)), ((\oplus p \ominus q, \hat{L}) \leqslant (\oplus p \ominus q, \alpha)), ((\oplus p \oplus q, \hat{H}) \leqslant (\oplus p \oplus q, \alpha)), \\ &\quad ((\oplus p \ominus q, \hat{L}) \leqslant (\oplus p \ominus q, \alpha)), ((\epsilon, \alpha_b) \leqslant (\epsilon, (\alpha \triangleright_q \alpha) \triangleright_p (\alpha \triangleright_q \alpha))), \\ &\quad ((\epsilon, \hat{L}) \leqslant (\epsilon, \gamma)), ((\oplus p, \hat{L}) \leqslant (\oplus p, \beta)), ((\oplus p, \pi_{\Theta(B)}(\alpha)) \leqslant (\oplus p, \gamma)), ((\epsilon, \hat{L}) \leqslant (\epsilon, \beta)), \\ &\quad ((\epsilon, \gamma) \leqslant (\epsilon, \beta \sqcap \beta)), ((\epsilon, \beta_b) \leqslant (\epsilon, (\beta \triangleright_p (\gamma \sqcap \pi_{\Theta(B)}(\alpha_b))) \sqcap (\beta \sqcap \beta))) \} \end{split}$$

The constraint solving consists of three steps: 1) decompose types in constraints into ground types and type variables; 2) saturate the constraint set by the transitivity of the subtyping relation; 3) solve the final constraint set by *merging* the lower and upper bounds of same variables and *unifying* them to emit a solution.

#### 3.2.1. Decomposition

The first step is to decompose the types into the simpler ones, namely, type variables and ground types, according to their structures. This decomposition is formalized as the decomposing rules, which are given in Fig. 8. Rules (CD-CUP), (CD-CAP), (CD-SVAR) and (CD-MEGER<sub>0</sub>)<sup>7</sup> are trivial. Rule

- <sup>7</sup>Rule (CD-MEGER<sub>0</sub>) is not necessary but can simplify the constraints as shown in the illustrated example.

2.0

2.2

<sup>&</sup>lt;sup>6</sup>Indeed, the constraint set for *fun* is  $C_A \cup C_B$ , but here we focus on the constraints generated by the function itself.

$$\begin{split} & \text{CD-CUP} \underbrace{-C \cup \{((\Lambda, t_1 \sqcup t_2) \leqslant (\Lambda', t))\} \rightsquigarrow_d C \cup \{((\Lambda, t_1) \leqslant (\Lambda', t)), ((\Lambda, t_2) \leqslant (\Lambda', t))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', t_1 \sqcap t_2))\} \rightsquigarrow_d C \cup \{((\Lambda, t) \leqslant (\Lambda', t_1)), ((\Lambda, t) \leqslant (\Lambda', t_2))\}} \\ & \text{CD-SVAR} \underbrace{-C \cup \{((\Lambda, a) \leqslant (\Lambda, a))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, a) \leqslant (\Lambda, a))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, a) \leqslant (\Lambda, a))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, a) \leqslant (\Lambda', a))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', t'))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t')))\} \rightsquigarrow_d C \cup \{((\Lambda, t) \leqslant (\Lambda', t'))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t')))\} \rightsquigarrow_d C \cup \{((\Lambda, t) \leqslant (\Lambda', t))\}\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t')))\} \rightsquigarrow_d C \cup \{((\Lambda, t) \leqslant (\Lambda', t_1))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t')))\} \rightsquigarrow_d C \cup \{((\Lambda, t) \leqslant (\Lambda', t_1))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t')))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', t_1))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t)))\} \rightsquigarrow_d C}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t)))\} \backsim_d C}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t)))\}}_{C \cup \{((\Lambda, t) \leqslant (\Lambda', \pi_P(t)))\} \backsim_d C}_{C \cup \{((\Lambda, t) \land (\Lambda, \pi_P(t)))\}}_{C \cup \{((\Lambda, t) \land (\Lambda, \pi_P(t)))\} \backsim_d C}_{C \cup \{(\Lambda, t) \land (\Lambda, \pi_P(t))\}}_{C \cup \{((\Lambda, t) \land (\Lambda, \pi_P(t)))\}}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))\}}_{C \cup \{((\Lambda, t) \land (\Lambda, \pi_P(t)))\}}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}_{C \cup \{(\Lambda, \pi_P(t)))}}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}}_{C \cup \{(\Lambda, \pi_P(t) \land (\Lambda, \pi_P(t)))}_{C \cup \{(\Lambda, \pi_$$

Fig. 8. Constraint solving rules, including decomposition (CD-) and saturation (CS-).

(CD-MEGER<sub>1</sub>) states that two *p*-merged types satisfy the relation if and only if both their *p*-promotions and *p*-demotions satisfy the relation, where *t* can be viewed as a *p*-merged type  $t \triangleright_p t$ . The projection of types yields a "monomorphic type" such that any successive trace application makes no changes, therefore we have (CD-LAPP) and (CD-RAPP). Rules (CD-SUB<sub>0</sub>) and (CD-SUB<sub>1</sub>) handle the constraints on ground types, where  $\perp$  denotes the failure case. Let *dec* be the procedure for the constraint decomposition.

After decomposition, constraints have one of the forms:

$$((\Lambda_l, \alpha) \leqslant (\Lambda_r, t_g)), \ ((\Lambda_l, t_g) \leqslant (\Lambda_r, \beta)), \ ((\Lambda_l, \alpha) \leqslant (\Lambda_r, \beta))$$

Considering the constraint set  $C_{eg}$ , these are four constraints that need to be decomposed. Take the constraint  $((\epsilon, \beta_b) \leq (\epsilon, (\beta \triangleright_p (\gamma \sqcap \pi_{\Theta(B)}(\alpha_b))) \sqcap (\beta \sqcap \beta)))$  for example, where  $\Theta(B) = \{q\}$ . Rules (CD-CAP), (CD-MEGER<sub>1</sub>), and (CD-RAPP) are performed, yielding  $\{((\epsilon, \beta_b) \leq (\epsilon, \beta)), ((\ominus p, \beta_b) \leq (\epsilon, \beta))\}$ 

| $(\ominus p, \gamma)$ , $((\ominus p, \beta_b) \leq (\ominus p \oplus q, \alpha_b)$ , $((\oplus p, \beta_b) \leq (\oplus p, \beta))$ }. After decomposing, $C_{eg}$ becomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \{ ((\oplus p \oplus q, \hat{l_1}) \leq (\oplus p \oplus q, \alpha)), ((\oplus p \ominus q, \hat{L}) \leq (\oplus p \ominus q, \alpha)), ((\ominus p \oplus q, \hat{H}) \leq (\ominus p \oplus q, \alpha)), \\ ((\ominus p \ominus q, \hat{L}) \leq (\ominus p \ominus q, \alpha)), ((\epsilon, \alpha_b) \leq (\epsilon, \alpha)), ((\epsilon, \hat{L}) \leq (\epsilon, \gamma)), ((\oplus p, \hat{L}) \leq (\oplus p, \beta)), \\ ((\ominus p \oplus q, \alpha) \leq (\ominus p, \gamma)), ((\epsilon, \hat{L}) \leq (\epsilon, \beta)), ((\epsilon, \gamma) \leq (\epsilon, \beta)), ((\epsilon, \beta_b) \leq (\epsilon, \beta)), \\ ((\ominus p, \beta_b) \leq (\ominus p, \gamma)), (((\ominus p, \beta_b) \leq (\ominus p \oplus q, \alpha_b)), ((\oplus p, \beta_b) \leq (\oplus p, \beta)) \} $ |

where the constraints in blue are generated via decomposition.

#### 3.2.2. Saturation

Considering a variable  $\alpha$ , to ensure any lower bound (e.g.,  $((\Lambda_l, t_l) \leq (\Lambda_1, \alpha)))$  is "smaller" than any of its upper bound (e.g.,  $((\Lambda_2, \alpha) \leq (\Lambda_r, t_r)))$ , we need to saturate the constraint set by adding these conditions. However, since our constraints are guarded by permission traces, we need to consider lower-upper bound relations only when the traces of the variable  $\alpha$  can be entailed by the same permission set, namely, the intersection of their interpretations are not empty. In that case, we extend the traces of both the lower and upper bound constraints such that the traces of  $\alpha$  are the same (*i.e.*,  $\Lambda_1 :: \Lambda_2^8$ ), by adding the missing traces (*i.e.*,  $dif(\Lambda_1 :: \Lambda_2, \Lambda_1)$  for lower bound constraint while  $dif(\Lambda_1 :: \Lambda_2, \Lambda_2)$  for the upper one). This is done by the saturation rule (i.e., CS-LU in Fig. 8). Let sat be the procedure for the constraint saturation. 

Assume that there is an order < on type variables and the smaller variable has a higher priority. If two variables  $\alpha, \beta$  with  $\alpha < \beta$  are in the same constraint  $\beta \leq \alpha$  (or  $\alpha \leq \beta$ ), we consider the variable  $\beta$  with the 2.2 larger order is a bound for the variable  $\alpha$  with the smaller order during constraint solving, but not vice-versa. There is a special case where both variables on two sides are the same, e.g.,  $((\Lambda, \alpha) \leq (\Lambda', \alpha))$ . In that case, we regroup all the traces of the variable  $\alpha$  as the trace set  $\{\Lambda_i \mid i \in I\}$  such that the set is full (*i.e.*,  $\bigcup_{i \in I} \mathcal{I}(\Lambda_i) = \mathbf{P}$ ) and disjoint (*i.e.*,  $\forall i, j \in I.i \neq j \Rightarrow \mathcal{I}(\Lambda_i) \cap \mathcal{I}(\Lambda_i) = \emptyset$ ), and rewrite the constraints of  $\alpha$  w.r.t. the set  $\{\Lambda_i \mid i \in I\}$ . A possible trace set is the combination of the promotions and demotions on the permissions related to the variable  $\alpha$ . For example, the combination on the permission set  $\{p,q\}$  is  $\{\oplus p :: \oplus q, \oplus p :: \oplus q, \ominus p :: \oplus q, \ominus p :: \oplus q\}$ . Then we treat each  $(\Lambda_i, \alpha)$  as different fresh variables  $\alpha_i$ . Therefore, with the ordering, there are no loops like:  $(\Lambda, \alpha) \leq \ldots \leq (\Lambda', \alpha)$ . Note that different ordering could yield different results. 

Let us consider the constraint set  $C_{eg}$  and assume that the order on variables is  $\beta_b < \alpha_b < \alpha < \gamma < \beta$ . There are four lower bounds and one upper bound for  $\alpha$ . But only the lower bound  $((\ominus p \oplus q, \hat{H}) \leq$  $(\ominus p \oplus q, \alpha))$  shares the same satisfiable trace with the upper bound  $((\ominus p \oplus q, \alpha) \leq (\ominus p, \gamma))$ . So we saturate the set with the constraint  $((\ominus p \oplus q, \hat{H}) \leq (\ominus p, \gamma))$ . Note that the constraint  $((\epsilon, \alpha_b) \leq (\epsilon, \alpha))$ is not considered as a lower bound for  $\alpha$  due to  $\alpha_b < \alpha$ . Likewise, there are two lower bounds (*i.e.*,  $((\epsilon, L) \leq (\epsilon, \gamma))$  and the one newly generated above) and one upper bound (*i.e.*,  $((\epsilon, \gamma) \leq (\epsilon, \beta)))$  for  $\gamma$ . Each lower bound has a satisfiable intersected trace with the upper bound, which yields the following constraints  $((\epsilon, \hat{L}) \leq (\epsilon, \beta))$  (already existing in  $C_{eq}$ ) and  $((\ominus p \oplus q, \hat{H}) \leq (\ominus p, \beta))$  (extended by  $\ominus p$ ). While there are no upper bounds for  $\beta$  and no lower bounds for  $\alpha_b$  and  $\beta_b$ , so no constraints are generated.

2.0

2.2

<sup>&</sup>lt;sup>8</sup>It should be  $\Lambda_1 :: dif(\Lambda_1, \Lambda_2)$  or  $\Lambda_2 :: dif(\Lambda_2, \Lambda_1)$ . But thanks to Lemmas 3.4 and 3.2, we assume the duplicated promotions and demotions can be removed implicitly and the remaining promotions and demotions can be reordered if needed. Here we write  $\Lambda_1 :: \Lambda_2$  for short.

2.0

2.2

| 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | $\{((\boldsymbol{\epsilon},\boldsymbol{\beta}_b)\leqslant(\boldsymbol{\epsilon},\boldsymbol{\beta})),((\ominus p,\boldsymbol{\beta}_b)\leqslant(\ominus p,\boldsymbol{\gamma})),((\ominus p,\boldsymbol{\beta}_b)\leqslant(\ominus p\oplus q,\alpha_b)),((\oplus p,\boldsymbol{\beta}_b)\leqslant(\oplus p,\boldsymbol{\beta})),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 | $((\epsilon, \alpha_b) \leqslant (\epsilon, \alpha)), ((\oplus p \oplus q, \hat{l_1}) \leqslant (\oplus p \oplus q, \alpha)), ((\oplus p \ominus q, \hat{L}) \leqslant (\oplus p \ominus q, \alpha)), ((\ominus p \oplus q, \hat{H}) \leqslant (\ominus p \oplus q, \alpha)), ((\oplus p \oplus q, \alpha)), ((\oplus p \oplus q, \alpha)), ((\oplus p \oplus q, \alpha)), (\oplus p \oplus q, \alpha)), ((\oplus p \oplus q, \alpha)), (\oplus p \oplus q, \alpha)) \in \mathbb{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 | $((\ominus p \ominus q, \hat{L}) \leqslant (\ominus p \ominus q, \alpha)), ((\ominus p \oplus q, \alpha) \leqslant (\ominus p, \gamma)), ((\ominus p \oplus q, \hat{H}) \leqslant (\ominus p, \gamma)), ((\epsilon, \hat{L}) \leqslant (\epsilon, \gamma)), ((\epsilon, \hat{L}) \ast (\epsilon, $ |
| 6 | $((\epsilon,\gamma)\leqslant(\epsilon,\beta)),((\ominus p\oplus q,\hat{H})\leqslant(\ominus p,\beta)),((\epsilon,\hat{L})\leqslant(\epsilon,\beta)),((\oplus p,\hat{L})\leqslant(\oplus p,\beta))\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

where the constraints are rearranged via the ordering and the ones in blue are newly added via saturation. Given two constraint sets  $C_1, C_2$ , we say  $C_1$  entails  $C_2$ , denoted as  $C_1 \models C_2$ , iff. for any substitution  $\theta$ , if  $\theta \models C_1$ , then  $\theta \models C_2$ . We proved that the constraint solving rules are sound and complete, that is, the original constraint set entails the converted set (obtained by decomposition and saturation), and vice-versa.

**Lemma 3.12** If  $C \rightsquigarrow_r C'$ , then  $C \vDash C'$  and  $C' \vDash C$ , where  $r \in \{d, s\}$ . 

## 3.2.3. Unification

There are two kinds of variables in our setting: global variables and non-global ones, and the con-straints for them are all guarded by permission traces. Since the types for non-global variables are de-pendent on the permission sets, we need to consider the satisfiability of (any subset of) the permission traces of a non-global variable  $\alpha$  under any permission set when constructing a type for it. For that, we consider the evaluation of a type t guarded by a permission trace  $\Lambda$  along a permission set P. If  $P \models \Lambda$ , according to Definition 2.5 and Lemma 2.3, then the security level along P is preserved after the ap-plication of  $\Lambda$ . So clearly  $(t \cdot \Lambda)(P) = t(P)$ . While for  $P \not\models \Lambda$ , the security level along P is no longer preserved. Let us consider the simple case  $P \not\models \ominus p$  (*i.e.*,  $p \in P$ ). According to Definition 2.5, we have  $(t \cdot \ominus p)(P) = (t \downarrow_p)(P) = t(P \setminus \{p\})$ . That is, the security level along a set P containing p is updated as the one along  $P \setminus \{p\}$ . Similar to  $\oplus p$ . Therefore, for a trace  $\Lambda$ , we have  $(t \cdot \Lambda)(P) = t(P \cdot \Lambda)$ , where the application  $P \cdot \Lambda$  is defined as  $P \cdot (\oplus p :: \Lambda') = (P \cup \{p\}) \cdot \Lambda', P \cdot (\oplus p :: \Lambda') = (P \setminus \{p\}) \cdot \Lambda',$ and  $P \cdot \epsilon = P$ . It is easy to show that  $P \cdot \Lambda = P$  if  $P \models \Lambda$ . So we can uniform the above two cases into  $(t \cdot \Lambda)(P) = t(P \cdot \Lambda).$ 

Let us consider a non-global variable  $\alpha$  and assume that the constraints on it to be solved are  $\{((\Lambda_i^l, t_i^l) \leq (\Lambda_i, \alpha))\}_{i \in I}$  (*i.e.*, the lower bounds) and  $\{((\Lambda_i, \alpha) \leq (\Lambda_i^r, t_i^r))\}_{i \in J}$  (*i.e.*, the upper bounds). According the above discussion, for any permission set P,  $\alpha$  can take a type t such that  $(t \cdot \Lambda_i)(P)$  (i.e.,  $t(P \cdot \Lambda_i)$  is bigger than  $(t_i^l \cdot \Lambda_i^l)(P)$  for any  $\Lambda_i$  and that  $(t \cdot \Lambda_i)(P)$  (*i.e.*,  $t(P \cdot \Lambda_i)$ ) is smaller than  $(t_i^r \cdot \Lambda_i^r)(P)$ for any  $\Lambda_j$ . Consequently, t(P) should be bigger than the union  $\bigsqcup_{P' \cdot \Lambda_i = P} (t_i^l \cdot \Lambda_i^l)(P')$  and smaller than the intersection  $\prod_{p' \cdot \Lambda_i = P} (t_j^r \cdot \Lambda_j^r)(P')$ . In other words, t(P) is equivalent to  $((\bigsqcup_{p' \cdot \Lambda_i = P} t_i^l \cdot \Lambda_i^l)(P') \sqcup$  $\alpha'(P)$   $\cap (\prod_{P' \cdot \Lambda_i = P} t_i^r \cdot \Lambda_i^r)(P')$ , where  $\alpha'$  is a fresh type variable. Note that the constraint contributes to t(P) if P entails its guarded permission trace A. The type above is exactly what we want. We define the construction of the above type via the function *toType*: 

$$toType(\{(\Lambda_i^l, t_i^l, \Lambda_i, \alpha)\}_{i \in I}, \{(\Lambda_j, \alpha, \Lambda_j^r, t_j^r)\}_{j \in J}) =$$

let 
$$S_I^P = \{(i, P') \mid P' \cdot \Lambda_i = P, P' \subseteq \mathbf{P}, i \in I\}$$
 and  $S_J^P = \{(j, P') \mid P' \cdot \Lambda_j = P, P' \subseteq \mathbf{P}, j \in J\}$  in  $\{P \mapsto (\bigsqcup_{(i,P')\in S_I^P}(t_i^l \cdot \Lambda_i^l)(P') \sqcup \alpha'(P)) \sqcap \prod_{(j,P')\in S_I^P}(t_j^r \cdot \Lambda_j^r)(P') \mid P \subseteq \mathbf{P}\}$ 

(with the convention  $\bigsqcup_{(i,P')\in\emptyset} t_i(P') = L$  and  $\bigsqcup_{(j,P')\in\emptyset} t_j(P') = H$ .) Note that the fresh variables enable us to get a principal type [18] such that every possible type can be obtained from it via subsumption or instantiation. In practice, we take the least possible type.

Since the types for global variables are invariant for all permission sets, that is, the type for a global variable  $\alpha^G$  should be a level type, e.g.,  $\hat{l}$ . So the level type  $\hat{l}$  should be bigger than all its lower bounds 

and smaller than all its upper bounds. Let us consider a global variable  $\alpha^G$  and assume that the constraints on it to be solved are  $\{((\Lambda_i^l, t_i^l) \leq (\Lambda_i, \alpha^G))\}_{i \in I}$  (*i.e.*, the lower bounds) and  $\{((\Lambda_i, \alpha^G) \leq (\Lambda_i^r, t_i^r))\}_{i \in J}$ (*i.e.*, the upper bounds). Given a type t, let maxlevel(t) and minlevel(t) denote the maximum level and the minimum level in type t, respectively. So the level l should be bigger than any maximum level of all its lower bounds (i.e.,  $l \ge maxlevel(t_i^l \cdot \Lambda_i^l)$ ) and smaller than any minimum level of all its upper bounds (i.e.,  $l \leq minlevel(t_i^r \cdot \Lambda_i^r)$ ). In other words, l can take any level ranging from  $\bigsqcup_{i \in I} maxlevel(t_i^l \cdot \Lambda_i^r)$  $\Lambda_i^l$  to  $\prod_{i \in J} minlevel(t_i^r \cdot \Lambda_i^r)$ , which indicates that l is equivalent to  $(\bigsqcup_{i \in J} maxlevel(t_i^l \cdot \Lambda_i^l) \sqcup l_{\alpha^G}) \sqcap$  $\prod_{j \in J} minlevel(t_j^r \cdot \Lambda_j^r)$ , where  $l_{\alpha^G}$  is a fresh level variable. Likewise, we define the construction of the type above via the function  $toType^G$ :  $toType^{G}(\{(\Lambda_{i}^{l}, t_{i}^{l}, \Lambda_{i}, \alpha^{G})\}_{i \in I}, \{(\Lambda_{j}, \alpha^{G}, \Lambda_{j}^{r}, t_{j}^{r})\}_{j \in J}) =$ let  $l_l = \bigsqcup_{i \in I} maxlevel(t_i^l \cdot \Lambda_i^l)$  and  $l_r = \bigsqcup_{i \in J} minlevel(t_i^r \cdot \Lambda_i^r)$  in  $(l_l \sqcup l_{a^G}) \sqcap l_r$ (with the convention  $\bigsqcup_{i \in \emptyset} l_i = L$  and  $\bigsqcup_{i \in \emptyset} l_j = H$ .) Moreover, due to the absence of loops in constraints and that the variables are in order, we can solve the constraints in reverse order on variables by unification. The unification algorithm *unify* is presented as follows. unify(C) =let subst  $\theta$  (( $\Lambda_l, t_l, \Lambda_r, t_r$ )) = (( $\Lambda_l, t_l\theta, \Lambda_r, t_r\theta$ )) in if the maximum variable  $\alpha$  exists in C construct a type  $t_{\alpha}$  for  $\alpha$  via the function toType or  $toType^{G}$ let C' be the remaining constraints in 2.2 let C'' = List.map (subst  $[\alpha \mapsto t_{\alpha}]) C'$  in 2.2 let  $\theta' = unify(C'')$  in  $\theta'[\alpha \mapsto t_{\alpha}]$ else return [] Consider the constraint set  $C_{eg}$  again and assume the set **P** of all permissions is  $\{p, q\}$ . Firstly, let us take the constraints on the maximum variable  $\beta$ , which are the following set without any upper bounds  $\{((\ominus p \oplus q, \hat{H}) \leq (\ominus p, \beta)), ((\epsilon, \hat{L}) \leq (\epsilon, \beta)), ((\oplus p, \hat{L}) \leq (\oplus p, \beta))\}$ For the security level along the permission set  $\emptyset$ , there are three combinations contributing to it:  $(\ominus p, \emptyset)$ ,  $(\ominus p, \{p\})$  and  $(\epsilon, \emptyset)$ . So the level for  $\emptyset$  is  $((\hat{H} \cdot \ominus p \oplus q)(\emptyset) \sqcup (\hat{H} \cdot \ominus p \oplus q)(\{p\}) \sqcup (\hat{L} \cdot \epsilon)(\emptyset) \sqcup \beta'(\emptyset)) \sqcap H$ , which is equivalent to H. Similar to the other sets. So by applying the function toType, we construct for  $\beta$  the type  $t_{\beta} = \{ \emptyset \mapsto H, \{p\} \mapsto (L \sqcup \beta'(\{p\})) \sqcap H, \{q\} \mapsto H, \{p,q\} \mapsto (L \sqcup \beta'(\{p,q\})) \sqcap H \},$ where  $\beta'$  is a fresh variable. For simplicity, we pick the least possible upper bound when constructing types. So we take  $\{\emptyset \mapsto H, \{p\} \mapsto L, \{q\} \mapsto H, \{p,q\} \mapsto L\}$  as  $t_\beta$  instead. Next, we substitute  $t_\beta$  for all the occurrences of  $\beta$  in the remaining constraints and continue with the constraints on  $\gamma$ ,  $\alpha$ ,  $\alpha_b$ , and  $\beta_b$ . Finally, the types constructed for these type variables are  $t_{\gamma} = t_{\beta}$  and  $t_{\alpha} = \{\emptyset \mapsto L, \{p\} \mapsto L, \{q\} \mapsto$  $H, \{p,q\} \mapsto l_1\}, t_{\alpha_b} = t_{\alpha}, t_{\beta_b} = t_{\beta}$ , respectively. Therefore, the types we infer for *A.getInfo* and *B.fun* are ()  $\xrightarrow{t_{\alpha}} t_{\alpha}$  and ()  $\xrightarrow{t_{\beta}} t_{\beta}$ , respectively. Next, we show that our unification is sound and complete. **Lemma 3.13** *If unify*(C) =  $\theta$ , *then*  $\theta \models C$ . **Lemma 3.14** If  $\theta \models C$ , then there exist  $\theta'$  and  $\theta''$  such that  $unify(C) = \theta'$  and  $\theta = \theta' \theta''$ . Let sol be the function for the constraint solving algorithm, that is, sol(C) = unify(sat(dec(C))). It is provable that the constraint solving algorithm is sound and complete. 

2.2 

Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

| 1      | <b>Lemma 3.15</b> If $sol(C) = \theta$ , then $\theta \models C$ .                                                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2<br>3 | <b>Proof.</b> By Lemma 3.12 and Lemma 3.13. $\Box$                                                                                                 |
| 4<br>5 | <b>Lemma 3.16</b> If $\theta \models C$ , then there exist $\theta'$ and $\theta''$ such that $sol(C) = \theta'$ and $\theta = \theta' \theta''$ . |
| 6<br>7 | <b>Proof.</b> By Lemma 3.12 and Lemma 3.14.                                                                                                        |
| 8      |                                                                                                                                                    |

To conclude, an expression (command, function, resp.) is typable, iff it is derivable under the constraint rules with a solvable constraint set by our algorithm. Therefore, our type inference system is sound and complete. Moreover, as the function call chains are finite, the constraint generation terminates with a finite constraint set, which can be solved by our algorithm in finite steps. Thus, our type inference system terminates.

**Theorem 3.1** The type inference system is sound, complete and decidable.

- **Proof.** • sound: By Lemma 3.8, Lemma 3.10, and Lemma 3.15.
  - complete: By Lemma 3.9, Lemma 3.11, and Lemma 3.16.
  - decidable: as the function call chains are finite, the constraint generation terminates with a finite constraint set, which can be solved by sol in finite steps. Thus, the type inference system terminates.

## 4. A Representation of Types

As given in Definition 2.1, our types are defined as mappings from the power set  $\mathcal{P}$  of the permission set **P** to the lattice  $\mathscr{L}$  of security levels. Naively encoding types as permission sets leads to an exponential increase in time as well as size required to process and manipulate them due to the cardinality of the power set  $\mathcal{P}$  growing as  $2^n$ , where n is the number of permissions. Android, itself, has around 200 permissions<sup>9</sup> which can lead to performance decreases due to the time taken to process permissions. In practice, we can expect a security type to consist only of a few 'interesting' mappings for some combinations of permissions, and a 'default' mapping for the rest of the combinations of permissions, so the actual size of security types used in practice should be much smaller.

There are a number of choices one can make as to how to encode the 'default' mappings; for example, one could use propositional logic, first order logic, or some ad hoc data structures. Two main consid-erations are the space complexity of the chosen representation (in the average case) and the space/time complexity of the type-related operations on the representation. Here we choose a representation of types that builds on the concept of reduced ordered binary decision diagrams (ROBDDs) [20, 21]. ROBDD has been well-studied and has been applied successfully in areas such as model checking [22], so we think it is a good choice to build our representation on. 

The principle idea behind choosing ROBDDs as the underlying data structure for representing types lies in the fact that any permission set can be encoded as *bit vectors* (after fixing an order on these permissions), namely, the presence or absence of permissions can be represented by a sequence of 1s and 0s. Taking the permission set  $\mathbf{P} = \{p, q\}$  from Listing 2 as example, all the possible permission sets 

 <sup>&</sup>lt;sup>9</sup>https://developer.android.com/reference/android/Manifest.permission.html

can be represented as the bit vectors  $\{00, 01, 10, 11\}$ . Moreover, as shown in Section 3.2, the permission traces are interpreted as sets of permission sets and can be considered as boolean logic formulae on permission sets, where  $\oplus$  and  $\ominus$  respectively denote the positive and negative literals, corresponding to the presence or absence of permissions. Thus the encoding of ROBDD enables us to infer our types directly on the permission traces via the logic connectives. The key is to generate a set of permission traces  $\{\Lambda_i | i \in I\}$  for each variable such that they are full (*i.e.*,  $\bigcup_{i \in I} \mathcal{I}(\Lambda_i) = \mathbf{P}$ ) and disjoint (*i.e.*,  $\forall i, j \in I.i \neq j \Rightarrow \mathcal{I}(\Lambda_i) \cap \mathcal{I}(\Lambda_j) = \emptyset$ ). For example, we can infer for  $\beta$  in Listing 4 the type  $t_{\beta} = \emptyset$  $\{ \ominus p \mapsto H, \oplus p \mapsto (L \sqcup l_{\beta}^{\oplus p}) \sqcap H\} \text{ (no matter what } \mathbf{P} \text{ is), which is a variant of ROBDD, rather than} \\ \{ \emptyset \mapsto H, \{p\} \mapsto (L \sqcup l_{\beta}^{\{p\}}) \sqcap H, \{q\} \mapsto H, \{p,q\} \mapsto (L \sqcup l_{\beta}^{\{p,q\}}) \sqcap H\} (\mathbf{P} = \{p,q\}).$ 

For simplicity, we shall refer to ROBDDs as just binary decision diagrams (BDDs). BDDs have some important and useful properties: (i) canonicity, that is to say for a fixed boolean variable ordering, each boolean function has a *canonical* (i.e. *unique*) representation (up to isomorphism) [20, 21]; and (ii) op-erations on BDDs are efficient. With proper ordering, the time complexity of operations usually depends linearly on the number of boolean variables [20]. Note that a security type with a two-element lattice ('High' and 'Low') is essentially a boolean function. So the worst case space complexity of the BDD representation (or any known representation of boolean functions, for that matter) is exponential [20].

#### 

# 4.1. Types as Binary Decision Diagrams

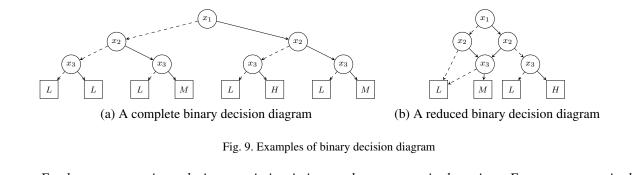
In this section, we give the definition of a binary decision diagram that fits our types, which is a modification<sup>10</sup> of the one in [20]. Note that in all our definitions, we assume that a *static global order* has been defined on the permissions. This serves two purposes: (i) the concept of representing permission sets as bit vectors would be meaningless otherwise; and (ii) it helps in the construction of binary decision diagrams. 

To start with, let us consider a general function  $f: \{0,1\}^n \to S$ , where S is an arbitrary finite set. Clearly, we can represent it as a *truth table*. More specifically, we can represent the function  $f(x_1, \ldots, x_n)$ as a 2<sup>n</sup>-bit string of values, where each value is some  $s \in S$ . This string starts with the function value  $f(0,\ldots,0)$  and continues on with  $f(0,\ldots,0,1),\ldots,f(1,\ldots,1,1)$ . As an example, the truth table for the boolean function  $g = x_1 \wedge x_2$  would be g(0,0)g(0,1)g(1,0)g(1,1) = FFFT. 

**Definition 4.1** Given an arbitrary finite set S and a natural number n, a truth table of order n is a string  $\alpha \in S^*$  of length  $2^n$ . A bead of order n is a truth table  $\alpha$  of order n that is not square, that is,  $\alpha$  can not be represented as  $\beta\beta$  for any string  $\beta \in S^*$  of length  $2^{n-1}$ . 

Given a finite set S, there are |S| beads of order 0; and  $|S|^2 - |S|$  beads of order 1. In general, there are  $|S|^{2^n} - |S|^{2^{n-1}}$  beads of order *n*. This is derived simply by removing elements on the diagonal of a square matrix of order  $2^{n-1}$ , that is, by removing all combinations  $\alpha\beta$  with  $\alpha = \beta$ , where  $\alpha, \beta$  are truth tables of order n - 1.

Our modified definition of a binary decision diagram to represent the function  $f: \{0,1\}^n \to S$  is given below.


**Definition 4.2** A binary decision diagram (BDD) is a rooted, directed graph with vertex set V con-taining two types of vertices. A nonterminal vertex (node) m has as attributes an argument index  $m.v \in \{1, 2, \dots, n\}$ ; and two children  $m.l, m.h \in V$  (referred to as low and high respectively). A terminal *vertex* (sink or leaf) m has as attribute a value m.val  $\in$  S, where S is an arbitrary finite set.

2.2

<sup>&</sup>lt;sup>10</sup>Our modification generalizes the set of outputs from binary to an arbitrary finite set.

2.0

2.2



Furthermore, a strict ordering restriction is imposed on nonterminal vertices. For any nonterminal vertex m, if m.l is also nonterminal, then it must be the case that m.v < m.l.v. Similarly, if m.h is nonterminal, then it must be the case that m.v < m.h.v.

A BDD is *reduced* if no two nodes are allowed to have the same triple of values (v, l, h). Therefore, no node m in a reduced BDD is allowed to have m.l = m.h, which indicates that the output does not depend on this particular node m. Fig. 9 gives two examples of BDDs that represent the same function  $f_e$  given in Table 1, wherein n = 3 and  $S = \{L, M, H\}$ . Note that, in this figure and others henceforth, the dashed lines represent the '0' or low branch. We can see that the first example (*i.e.*, Fig. 9a) is not reduced, because (i) the leftmost node of  $x_3$  has two equal children, and (ii) both the high children of the nodes  $x_2$  are equal. While the second example (*i.e.*, Fig. 9b) is reduced. 

| Table 1                           |                       |                       |                      |                       |                       |                       |                      |
|-----------------------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|----------------------|
| The truth table of function $f_e$ |                       |                       |                      |                       |                       |                       |                      |
| $x_1$                             | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f_e(x_1, x_2, x_3)$ | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> | $f_e(x_1, x_2, x_3)$ |
| 0                                 | 0                     | 0                     | L                    | 1                     | 0                     | 0                     | L                    |
| 0                                 | 0                     | 1                     | L                    | 1                     | 0                     | 1                     | Н                    |
| 0                                 | 1                     | 0                     | L                    | 1                     | 1                     | 0                     | L                    |
| 0                                 | 1                     | 1                     | М                    | 1                     | 1                     | 1                     | М                    |

We now show that our modified definition of a BDD still holds the property of *canonicity*. To that end, we modify a proof for canonicity as described by Knuth [21].

**Theorem 4.1** Given an arbitrary finite set S, any function of the form  $f : \{0, 1\}^n \to S$  has a unique (up to isomorphism) reduced binary decision diagram, where n is the number of inputs. 

**Proof.** We argue that every truth table  $\tau$  can be represented as a power of a unique bead. Let  $\tau$  be a truth table of order n that is not a bead. Then, by Definition 4.1, it is the square of a truth table  $\tau'$  of order n-1. By induction on the order of  $\tau$ , we have that  $\tau' = \beta^k$ , where k is a power of 2, and  $\beta$  is a bead of order  $\leq n-1$ . Hence, we have that  $\tau$  can be represented as  $\tau = \beta^{2k}$ . We call this  $\beta$  the *root* of  $\tau$  (and  $\tau'$ ). Therefore, by the principle of induction, every truth table  $\tau$  is a power of a unique bead.

A truth table  $\tau$  of order n > 0 can be represented as  $\tau_0 \tau_1$ , where  $\tau_0$  and  $\tau_1$  are truth tables of order n-1. By construction,  $\tau$  represents the function  $f(x_1, x_2, \dots, x_n)$  if and only if  $\tau_0$  represents  $f(0, x_2, \dots, x_n)$ and  $\tau_1$  represents  $f(1, x_2, \ldots, x_n)$ . The functions  $f(0, x_2, \ldots, x_n)$  and  $f(1, x_2, \ldots, x_n)$  are called *subfunc*-tions of f; and  $\tau_0$  and  $\tau_1$  are called subtables of  $\tau$ . The beads of such a function f are the subtables of its truth table that are beads.

Now we come to the crux of the argument: the nodes of a binary decision diagram for a function f (as described above) are in bijection with the beads of f. A function's truth tables of order n + 1 - k

2.2 

(with  $1 \le k \le n$ ) correspond to its subfunctions  $f(c_1, \ldots, c_{k-1}, x_k, \ldots, x_n)$ , where  $c_i$  denotes a binary value. Hence, the beads of order n + 1 - k correspond to those subfunctions that depend on their first boolean variable  $x_k$ . Therefore, every such bead corresponds to a node (k) in the BDD. Let the truth table corresponding to this node be  $\tau' = \tau'_0 \tau'_1$ , then its l and h attributes point respectively to the nodes that correspond to the roots of  $\tau'_0$  and  $\tau'_1$ .  $\Box$ 

Considering the function  $f_e$  in Table 1, the truth table  $\tau_{f_e}$  for  $f_e$  is *LLLMLHLM* and hence, all possible subtables of  $\tau_{f_e}$  are {*LLLMLHLM*, *LLLM*, *LHLM*, *LL*, *LM*, *LH*, *L*, *M*, *H*}. Given this, the beads of  $f_e$ then are {*LLLMLHLM*, *LLLM*, *LHLM*, *LH*, *L*, *M*, *H*}. Note that the subtable *LL* is not present since it is not a bead. Fig. 10 showcases the BDD formed by the beads of  $f_e$  as laid out in Theorem 4.1. Note the isomorphism between Fig. 9b and 10.

Let us return to our types. As mentioned above, permission sets can be encoded as bit vectors, where '0' represents the absence of a permission and '1' represents the presence of a permission. Moreover, operations on sets such as  $\cup$ ,  $\cap$ ,  $\setminus$ , etc. can easily be transcribed into operations on bit vectors. Accordingly, we redefine our types as follows:

**Definition 4.3** A base security type *t* is a mapping from the set of all possible bit vectors representing permission sets to the lattice of security levels, i.e.  $t : \mathcal{P} \to \mathcal{L}$ . The set of base types is denoted with  $\mathcal{T}$ .

<sup>18</sup> Using Theorem 4.1, the new definition of a type, and the definition of a binary decision diagram, we <sup>19</sup> define the representation of types as follows:

Definition 4.4 Let t be a base type. The representation of t, denoted by  $\mathcal{R}(t)$ , is a reduced ordered binary decision diagram, where each nonterminal node m represents (the position in the static order of) a permission  $p \in \{1, 2, \dots | \mathbf{P} |\}$ ; the low and high branches of m (i.e., m.l and m.h) represent the absence and the presence of p, respectively; and each terminal (or sink) node represents an output security level  $l \in \mathcal{L}$ .

In order to evaluate a permission set for the *representation* of a given type, one can simply move down the diagram by choosing the branch that corresponds to the 0-1 value in the bit vector for that particular permission. If a node for a permission p does not exist, then one can simply skip that permission as the output security level does not depend on p's value. Formally, the evaluation of the *representation* r along (a bit vector representing) a permission set P can be defined as

| r.val    | r is sink  |
|----------|------------|
|          | P[r.v] = 0 |
| (r.h(P)) | P[r.v] = 1 |

Clearly, it is easy to get that our representation is correct, as shown in Lemma 4.1.

Lemma 4.1 Let t be a type. Then for any permission set P, we have (1)  $t(P) = \mathcal{R}(t)(P)$ ; and (2) $\mathcal{R}(t)(P) = \mathcal{R}(t)(P \cup \{p\}) = \mathcal{R}(t)(P \setminus \{p\})$  for any permission  $p \notin \mathcal{R}(t)$ .

To illustrate, let us consider the type *t* that maps the sets of permissions  $\{p_1\}$  and  $\{p_2, p_3\}$  to *H*, and any other subset of  $\{p_1, p_2, p_3\}$  to *L*. Fig. 11 show the BDD of *t*, where the bit vector is represented as  $p_1p_2p_3$ . Following the paths to *H* in the diagram gives us the following bit vectors:  $\{100, 011\}$ . On the other hand, following the paths to *L* in the diagram gives us the following bit vectors:  $\{00x, 010, 101, 11x\}$ , where '*x*' represents permissions whose values do not affect the output security level. These values encompass all elements of the powerset  $\mathscr{P}$  and accurately represents the mapping in type *t* as required. Moreover, the permissions whose values do not affect the output security level can be

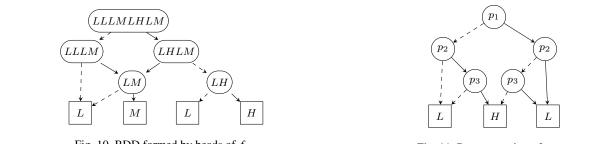



Fig. 10. BDD formed by beads of  $f_e$ 

Fig. 11. Representation of type *t* 

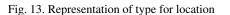
2.0

2.2

removed in BDD, which yields the small numbers (*i.e.*, 5 and 6, resp.) of nodes and of paths to the sinks. In comparison, a binary decision tree would have  $2^3 - 1$  nodes and  $2^3$  different paths to sinks.


An example in practice is the type  $t = \{ \emptyset \mapsto L, \{p\} \mapsto L, \{q\} \mapsto H, \{p,q\} \mapsto l_1 \}$  used in List-ing 2. Assuming the order is q, p, the paths to L in the corresponding BDD could be merged, resulting in fewer nodes and paths. Moreover, many apps or services require more than two permissions, such as the facial recognition service requiring the permissions for camera and storage (2 permissions for the storage group) and the video calling service requiring the permissions<sup>11</sup> for Wi-Fi, camera, audio, and storage. These services terminate immediately if any permission is not granted<sup>12</sup>. So the type for these services maps the set containing all the required permissions to a non-low security level depending on the services and the other sets to L, whose representation is given in Figure 12, where the dashed rectangle denotes a group of permissions, for example, the permission group for storage may contain READ\_EXTERNAL\_STORAGE and WRITE\_EXTERNAL\_STORAGE. Figure 12 shows that the repre-2.2 sentation requires |P| nodes and |P| + 1 paths to sinks, rather than  $2^{|P|} - 1$  nodes and  $2^{|P|}$  paths (even worse if all the permissions are considered), where P is the set of all required permissions. In addition, some services take different actions depending the granted permissions. For example, the location ser-vice determines the current location from GPS sensor (requiring the permissions for location), networks (requiring the permissions for Wi-Fi), or the last known location (requiring the permissions for storage). The type for the location service would map the set containing any group of required permissions to a non-low security level for the location and the other sets to L, whose representation is given in Figure 13, wherein a group is not granted if any one of its permissions is not granted. Similarly, the corresponding BDD has |P| nodes and at least |P| + 1 paths to sinks. So we believe the representation will be efficient in practice.

## 4.2. Operations on types


<sup>36</sup> Unlike BDDs in [20], the outputs of our BDDs are a multi-value lattice. It is quite difficult to come up <sup>37</sup> with a general framework describing operations on types as directly working on the Boolean functions <sup>38</sup> (*i.e.*, BDDs on two-value lattice). Therefore, we directly provide algorithms for operations on types <sup>39</sup> mentioned in Section 2.4, via reasoning on the structure of the diagram. Here we focus on the operations <sup>40</sup> only for our types, namely, *projection*, *promotion*, *demotion*, and *merging*. While the others, namely, the <sup>41</sup> intersection  $s \sqcap t$ , the union  $s \sqcup t$ , and the subtyping  $s \le t$ , could be obtained directly via the APPLY <sup>42</sup> function as described in [20, 21].

- <sup>12</sup>Such a multiple permission checking refers to https://codingmitra.com/multiple-permission-run-time-in-android/.

<sup>&</sup>lt;sup>11</sup>https://developers.connectycube.com/android/videocalling.



L



Firstly, with respect to the definition of type presentations, the properties for *promotion*, *demotion*, *projection*, and *merging* defined in Definition 2.5, 2.6, and 2.7 still hold.

Lemma 4.2 Given a base type t, a permission p, and a permission set  $P \in \mathscr{P}$ , then  $(1) \mathcal{R}(t \uparrow_p)(P) = \mathcal{R}(t)(P \cup \{p\})$  and  $(2) \mathcal{R}(t \downarrow_p)(P) = \mathcal{R}(t)(P \setminus \{p\})$ .

**Lemma 4.3** Given a type t and a permission set  $P \in \mathcal{P}$ , then for any permission set  $Q \in \mathcal{P}$ ,  $\mathcal{R}(\pi_P(t))(Q) = \mathcal{R}(t)(P)$ .

**Lemma 4.4** Given two types  $t_1, t_2$  and a permission p, then for any permission set  $P \in \mathscr{P}$ ,

$$\mathcal{R}(t_1 \triangleright_p t_2)(P) = \begin{cases} \mathcal{R}(t_1)(P) & p \in P \\ \mathcal{R}(t_2)(P) & p \notin P \end{cases}$$

Fig. 12. Representation of type for video calling

 $p_2$ 

L

 $p_n$ 

SL

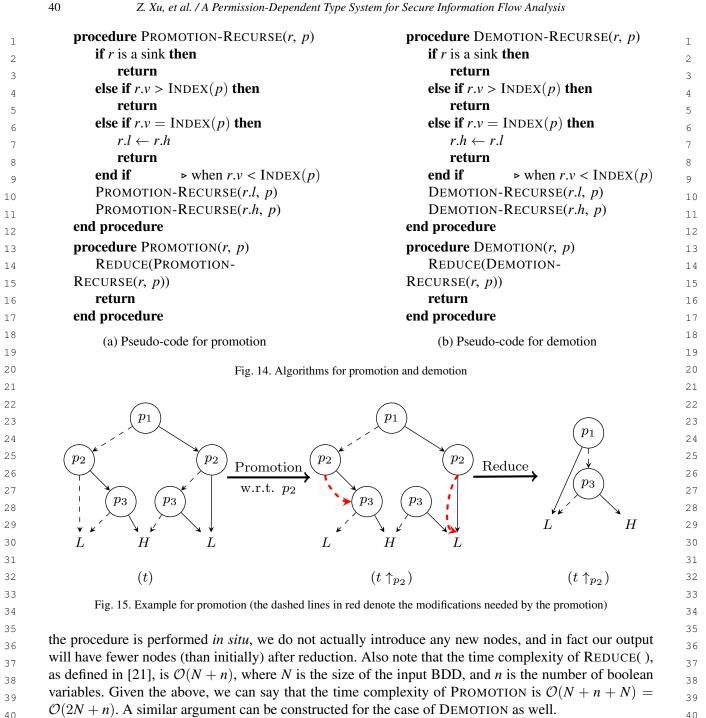
According to Lemma 4.3, we argue that we can simply represent the *projection* as a binary decision diagram with a single vertex, being a sink node.

Lemma 4.5 Given a base type t and a permission set  $P \in \mathcal{P}$ , the projection of t on P can be represented as a constant terminal vertex m with m.val = t(P).

The case for *promotion* and *demotion* is slightly more complicated. Recalling the Definition 2.5, the *promotion* of a base type *t* with respect to a permission *p* involves removing all branches where p = 0and redirecting them to where p = 1. In other words, *p* is present in all permission sets regardless. We formalize this intuitive explanation into an algorithm as described in Fig. 14a. Likewise, the algorithm for *demotion* is given in Fig. 14b, where all branches with p = 1 are removed and redirected the one with p = 0 instead.

The function INDEX(p) is a helper function that outputs the position of the permission p in the static global order; and REDUCE() is a procedure which restores the reduced property of a binary decision diagram [20, 21]. Hence, given a base type t, and a permission p, the *promotion* operation is performed *in situ* by calling PROMOTION( $\mathcal{R}(t), p$ ).

Fig. 15 shows the promotion of the type t in Fig. 9 with respect to  $p_2$ , where the dashed lines in red denote the modifications needed by the promotion.


The correctness of the algorithms for *promotion* and *demotion* is given in Lemma 4.6.

Lemma 4.6 Given a base type t and a permission p, then (a) PROMOTION( $\mathcal{R}(t), p$ ) =  $\mathcal{R}(t \uparrow_p)$  and (b) DEMOTION( $\mathcal{R}(t), p$ ) =  $\mathcal{R}(t \downarrow_p)$ .

One can see that the number of operations required for promoting a type depends on the number of nodes in  $\mathcal{R}(t)$ , or more accurately, the number of nodes *m* such that  $m.v \leq \text{INDEX}(p)$ . Note that since

LOC

2.0



Finally, let us describe how the merge operation could be implemented. Recall the definition: the *merging* of two types  $t_1$  and  $t_2$  along the permission p is:

 $t_1 \triangleright_p t_2(P) = \begin{cases} t_1(P), & p \in P \\ t_2(P), & p \notin P \end{cases} \quad \forall P \in \mathscr{P}$ 

|          | Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis                                                                                                                                                                             | 41                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| -        | <b>function</b> MERGE-RECURSE $(r_1, r_2, p)$                                                                                                                                                                                                                       | 1                 |
| 1        | <b>if</b> $r_1, r_2$ are sink <b>then</b>                                                                                                                                                                                                                           | 1                 |
| 2<br>3   | return $(p, r_2, r_1)$                                                                                                                                                                                                                                              | 2<br>3            |
| 4        | else if $r_1$ is sink or $r_1 \cdot v > r_2 \cdot v$ then                                                                                                                                                                                                           | 4                 |
| 4<br>5   | if $r_2 v > INDEX(p)$ then                                                                                                                                                                                                                                          | 4<br>5            |
| 6        | <b>return</b> $(p, r_2, r_1)$                                                                                                                                                                                                                                       | 6                 |
| 7        | else if $r_2 \cdot v = \text{INDEX}(p)$ then                                                                                                                                                                                                                        | 7                 |
| 8        | return $(r_2.v, r_2.l, r_1)$                                                                                                                                                                                                                                        | 8                 |
| 9        | else $ ightarrow r_2.v < INDEX($                                                                                                                                                                                                                                    |                   |
| 10       | <b>return</b> $(r_2.v, \text{MERGE-RECURSE}(r_1, r_2.l, p), \text{MERGE-RECURSE}(r_1, r_2.h, p))$                                                                                                                                                                   | 10                |
| 11       | end if                                                                                                                                                                                                                                                              | 11                |
| 12       | else if $r_2$ is sink or $r_1 v < r_2 v$ then                                                                                                                                                                                                                       | 12                |
| 13       | if $r_1.v > INDEX(p)$ then                                                                                                                                                                                                                                          | 13                |
| 14       | $\mathbf{return}\ (p,\ r_2,\ r_1)$                                                                                                                                                                                                                                  | 14                |
| 15       | else if $r_1.v = INDEX(p)$ then                                                                                                                                                                                                                                     | 15                |
| 16       | <b>return</b> $(r_1.v, r_2, r_1.h)$                                                                                                                                                                                                                                 | 16                |
| 17       | else $ ightarrow r_1.v < INDEX($                                                                                                                                                                                                                                    | $(p)_{17}$        |
| 18       | <b>return</b> $(r_1.v, MERGE-RECURSE(r_1.l, r_2, p), MERGE-RECURSE(r_1.h, r_2, p))$                                                                                                                                                                                 | 18                |
| 19       | end if                                                                                                                                                                                                                                                              | 19                |
| 20       | else $r_1.v = r_2$                                                                                                                                                                                                                                                  | 2.V 20            |
| 21       | if $r_1.v > INDEX(p)$ then                                                                                                                                                                                                                                          | 21                |
| 22       | return $(p, r_2, r_1)$                                                                                                                                                                                                                                              | 22                |
| 23       | else if $r_1 \cdot v = \text{INDEX}(p)$ then<br>$\triangleright$ Base Ca                                                                                                                                                                                            | ase <sub>23</sub> |
| 24       | $\mathbf{return} \ (r_1.v, \ r_2.l, \ r_1.h)$                                                                                                                                                                                                                       | 24                |
| 25       | else $r_{1.v} < \text{INDEX}($                                                                                                                                                                                                                                      | ( <i>p</i> ) 25   |
| 26       | <b>return</b> $(r_1.v, MERGE-RECURSE(r_1.l, r_2.l, p), MERGE-RECURSE(r_1.h, r_2.h, p))$<br>end if                                                                                                                                                                   | 26                |
| 27       | end if                                                                                                                                                                                                                                                              | 27                |
| 28       | end function                                                                                                                                                                                                                                                        | 28                |
| 29       |                                                                                                                                                                                                                                                                     | 29                |
| 30       | function MERGE $(r_1, r_2, p)$                                                                                                                                                                                                                                      | 30                |
| 31       | return REDUCE(MERGE-RECURSE( $r_1, r_2, p$ ))<br>end function                                                                                                                                                                                                       | 31                |
| 32       |                                                                                                                                                                                                                                                                     | 32                |
| 33<br>34 | Fig. 16. Algorithm for merge                                                                                                                                                                                                                                        | 33<br>34          |
| 35       |                                                                                                                                                                                                                                                                     |                   |
| 36       | That is, the node of p in the merged diagram is formed by the low branch of the node of p in $\mathcal{R}(t_2)$ a                                                                                                                                                   | IIU               |
| 37       | the high branch of the node of p in $\mathcal{R}(t_1)$ . Due to the reducing, the permission p may not occur in $\mathcal{R}(t_1)$                                                                                                                                  | $\iota_1)$        |
| 38       | or $\mathcal{R}(t_2)$ . So we divide the problem into two cases: (i) p occurs in neither $\mathcal{R}(t_1)$ nor $\mathcal{R}(t_2)$ (e.g., be                                                                                                                        | Juli              |
| 39       | $\mathcal{R}(t_1)$ and $\mathcal{R}(t_2)$ are sink or both $\mathcal{R}(t_1).v$ and $\mathcal{R}(t_2).v$ are greater than INDEX(p)); and (ii) p occurs in                                                                                                           | al                |
| 40       | least one of $\mathcal{R}(t_1)$ and $\mathcal{R}(t_2)$ . The first case is intuitively easy to reason for: we simply create a node $p$ and let the low branch and the high branch point to (the roots of) $\mathcal{R}(t_2)$ and $\mathcal{R}(t_1)$ , respectively. | tor 40            |
| 41       | The second case is slightly more complex. Let us assume p occurs in both $\mathcal{R}(t_1)$ , respectively.                                                                                                                                                         |                   |
| 42       | divide it into two subcases: (i) both representations are rooted by $p$ ; and (ii) one of the representations                                                                                                                                                       | 101               |
| 43       | not rooted by $p$ . For the first subcase, we simply redirect the low branch (i.e. 1 or '0' branch) of (the ro                                                                                                                                                      |                   |
| 44       | of $\mathcal{R}(t_1)$ to the low branch of (the root of) $\mathcal{R}(t_2)$ . And for the second subcase, we recursively traver                                                                                                                                     |                   |
| 45       | $\mathcal{R}(t_1)$ and $\mathcal{R}(t_2)$ until we reach a point where both the representations are rooted by p, and then mer                                                                                                                                       |                   |
| 46       | (1) and (2) and the reaction of point more counting representations are reacted by p, and then more                                                                                                                                                                 | 46                |
|          |                                                                                                                                                                                                                                                                     |                   |

2.0

2.2

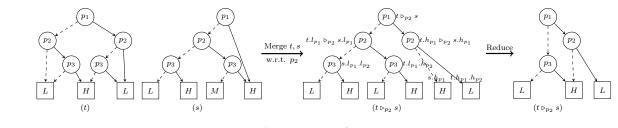



Fig. 17. Example for merge

as per the first subcase at that point. Moreover, if p does not occur in  $\mathcal{R}(t_1)$  (resp.  $\mathcal{R}(t_2)$ ), then we can imagine that there is a dummy node for p, where both its low branch and high branch are the smallest node in  $\mathcal{R}(t_1)$  (resp.  $\mathcal{R}(t_2)$ ) that is greater than INDEX(p). The algorithm is a slightly modified version of the APPLY function as described in [20, 21]. The intuition behind our change lies in, besides the sinks, all nodes with index no smaller than p are treated as a terminal (i.e. as a base case). Fig. 16 gives the details for the MERGE() algorithm.

An example of the merge of the type t in Fig. 9 and another type s along  $p_2$  is given in Fig. 17. The following lemma shows the correctness of the MERGE() algorithm.

**Lemma 4.7** Given two types  $t_1, t_2$  and a permission p, then  $MERGE(\mathcal{R}(t_1), \mathcal{R}(t_2), p) = \mathcal{R}(t_1 \triangleright_p t_2)$ .

<sup>18</sup>Note that unlike PROMOTION-RECURSE() and DEMOTION-RECURSE(), MERGE-RECURSE() con-<sup>20</sup>structs an entire new diagram such that the *p* nodes of both diagrams have been merged. Hence, the <sup>21</sup>space complexity of this operation drastically increases. The time complexity of MERGE-RECURSE() <sup>22</sup>has order of  $|\mathcal{R}(t_1)| \cdot |\mathcal{R}(t_2)|$  as the *merge* operation essentially creates ordered pairs of nodes of the <sup>23</sup>two diagrams. Moreover, we can represent the above as a matrix of values. Then we can reduce the time <sup>24</sup>complexity of MERGE-RECURSE() to  $|\mathcal{R}(t_1 \triangleright_p t_2)|$ , by only filling entries in the matrix that are reachable <sup>25</sup>by  $t_1 \triangleright_p t_2$ .

# 5. Related work

There is a large body of work on language-based information flow security. We shall discuss only closely related work.

We have extensively discussed the work by Banerjee and Naumann [11] and highlighted the major differences between our work and theirs in Section 1.

Flow-sensitive and value-dependent information flow type systems provide a general treatment of security types that may depend on other program variables or execution contexts [23–41]. Hunt and Sands [41] proposed a flow-sensitive type system where order of execution is taken into account in the analysis, and demonstrated that the system is precise. But the system is simpler than ours. Mantel et. al. [35] introduced a rely-guarantee style reasoning for information flow security in which the same variable can be assigned different security levels depending on whether some assumption is guaranteed, which is similar to our notion of permission-dependent security types. Li and Zhang [40] proposed both flow-sensitive and path-sensitive information flow analysis with program transformation techniques and dependent types. Information flow type systems that may depend on execution contexts have been con-sidered in work on program synthesis [24] and dynamic information flow control [34]. Our permission context can be seen as a special instance of execution context, however, our intended applications and settings are different from [24, 34], and issues such as parameter laundering does not occur in their set-ting. Lourenço and Caires [31] provided a precise dependent type system where security labels can be 

indexed by data structures, which can be used to encode the dependency of security labels on other values in the system. It may be possible to encode our notion of security types as a dependent type in their
 setting, by treating permission sets explicitly as an additional parameter to a function or a service, and to
 specify security levels of the output of the function as a type dependent on that parameter. Currently it is
 not yet clear to us how one could give a general construction of the index types in their type system that
 would correspond to our security types, and how the merge operator would translate to their dependent
 type constructors, among other things. We leave the exact correspondence to the future work.

Recent research on information flow has also been conducted to deal with Android security issues ([2, 16, 42–46]). SCandroid [2, 46] is a tool automating security certification of Android apps that fo-cuses on typing communication between applications. Unlike our work, they do not consider implicit flows, and do not take into account access control in their type system. Ernst et al [42] proposed a veri-fication model, SPARTA, for use in app stores to guarantee that apps are free of malicious information flows. Their approach requires the collaboration between software vendor and app store auditor and the additional modification of Android permission model to fit for their Information Flow Type-checker; soundness proof is also absent. Our work is done in the context of providing information flow security certificates for Android applications, following the Proof-Carrying-Code architecture by Necula and Lee [47] and does not require extra changes on existing Android application supply chain systems. Cas-sandra [44] performs the security analysis of apps on a server, which employs the proof-carrying code paradigm such that the server's analysis result can be validated on the client. H. Gunadi [45] presented a type system for DEX bytecode and prove the soundness of the type system with respect to a notion 2.0 2.0 of non-interference. Both [44] and [45] do not consider permission-dependent. ComDroid [16] detects communication vulnerabilities in Android applications from the perspectives of Intent senders and In-2.2 2.2 tent recipients. Weir [43] is a practical DIFC system for Android, allowing data owner applications to set secrecy policies and control the export of their data to the network. And a number of security anal-ysis tools, such as TaintDroid [48], DroidSafe [49] and TaintART [50], perform a data flow analysis on Android apps to track information-flow. But there is no soundness result for these analyses. 

A few inference algorithms [51, 52] have been proposed to infer dependent labels. Lifty [51] employed refinement types to encode information flow security, and proposed an inference algorithm based on the inference engine of liquid types [53]. While this is a neat solution for a two-level security lattice, the encoding does not apply to applications that require multiple security labels. Li and Zhang [52] proposed a general framework for designing and checking label inference algorithms for information flow analysis with dependent security labels. Based on the framework, novel inference algorithms that are both sound and complete are developed. The predicated constraint they proposed can express predicate on program state, and thus is a general version of ours. Limited to our setting, their one-shot algorithm is equivalent to ours. However, although efficient, the algorithms, except the one-shot one, may be over-conservative. For example, the early-accept algorithm and hybrid algorithm would infer  $\hat{H}$  for the motivation example getInfo listed in 2, which is clearly imprecise. Moreover, Li and Zhang did not provide a principal solution for their algorithms. This indicates that the algorithms, except the one-shot one, may not be complete in the sense that every possible solution can be obtained by the algorithm, such as the precise type for *getInfo* can't be obtained from  $\hat{H}$  via subsumption or instantiation. 

# 6. Conclusion and Future Work

We have provided a lightweight yet precise type system featuring Android permission model for enforcing secure information flow in an imperative language and proved its soundness with respect to

non-interference. Compared to existing work, our type system can specify a broader range of security
 policies, including non-monotonic ones. We have also proposed a decidable type inference algorithm
 by reducing it to a constraint solving problem, as well as a new way to represent our security types as
 reduced ordered binary decision diagrams.

We next discuss briefly several directions for future work.

The immediate one is to extend our system to richer programming languages, including objectoriented features (like [54]), exceptions (like [55]), etc. Another extension is to incorporate the efficient type representation in the inference algorithm. A proposed solution is to encode our permission guarded constraints as a special BDD, where the outputs are the constraints without guards (*i.e.*, constraints on the output labels).

We also plan to apply our type system to real Android applications to enforce permission-dependent information flow policies. A main challenge is to facilitate type inference so that a programmer does not need to type every variable and instead focuses only on policy specifications of a service. To enable this, we need to be able to extract all permissions relevant to an app and to identify all commands relevant to permission checking in an app. The former is straightforward since the permissions that can be granted to an app is statically specified in the app's manifest file. For the latter, the permission checking code segments (typically library function calls) can be located with pre-processed static analyses (e.g., [3, 4]).

Another interesting direction is in modeling runtime permission request. From Android 6.0 and above, several permissions are classified as *dangerous permissions* and granting of these permissions is subject to users' approval at runtime. This makes enforcing non-monotonic policies impossible in some cases, e.g., when a policy specifies the absence of a dangerous permission in releasing sensitive information. However, an app can only request for a permission it has explicitly declared in the manifest file, so to this extent, we can statically determine whether a permission request is definitely *not* going to be granted (as it is absent from the manifest), and whether it can potentially be granted. And fortunately (but unfortunately from a security perspective) the typical scenarios are that users grant all the requested permissions during runtime when requested (in order to gain a better user experience with the app). Therefore one can assume optimistically that all permissions in the manifest are finally granted. In the future, we plan to resolve this issue with weaker assumptions. One feasible approach is to model dangerous permissions in a typing environment separately and allow policies to be non-monotonic on non-dangerous permissions only. 

Lastly, our eventual goal is to translate source code typing into Dalvik bytecode typing, following a similar approach done by Gilles Barthe et al. [55–57] from Java source to JVM bytecode. The key idea that we describe in the paper, i.e., precise characterizations of security of IPC channels that depends on permission checks, can still be applied to richer type systems such as those used in the Cassandra project [44] or Gunadi's type system [45]. We envision our implementation can piggyback on, say, Cassandra system to improve the coverage of typable applications.

# References

- [1] W. Enck, M. Ongtang and P. McDaniel, Understanding Android Security, *IEEE Security and Privacy* 7(1) (2009), 50–57.
- [2] A.P. Fuchs, A. Chaudhuri and J. Foster, SCanDroid : Automated Security Certification of Android Applications, Technical
   Report, CS-TR-4991, University of Maryland, 2009.
- [3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau and P. McDaniel, FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for Android Apps, *SIGPLAN Not.* 49(6) (2014), 259–269.

2.0

2.2

- [4] F. Wei, S. Roy, X. Ou and Robby, Amandroid: A Precise and General Inter-component Data Flow Analysis Framework for Security Vetting of Android Apps, in: *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security*, CCS '14, ACM, New York, NY, USA, 2014, pp. 1329–1341. ISBN 978-1-4503-2957-6.
   [5] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau and P. McDaniel,
- L. EI, A. Batel, T.F. Bissyande, J. Klein, T. Le Traon, S. Alzi, S. Kashlorel, E. Bodden, D. Octeau and F. McDanlel,
   IccTA: Detecting Inter-component Privacy Leaks in Android Apps, in: *Proceedings of the 37th International Conference on Software Engineering Volume 1*, ICSE '15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 280–291. ISBN 978-1-4799 1934-5.
  - [6] D.E. Denning, A Lattice Model of Secure Information Flow, *Communications of the ACM* 19(5) (1976), 236–243.
  - [7] D.E. Denning and P.J. Denning, Certification of Programs for Secure Information Flow, *Communications of the ACM* **20**(7) (1977), 504–513.
- [8] D. Volpano, C. Irvine and G. Smith, A Sound Type System for Secure Flow Analysis, *Journal of Computer Security* 4(2–3) (1996), 167–187.
- [9] A. Sabelfeld and A.C. Myers, Language-based Information-flow Security, *IEEE Journal on Selected Areas in Communications* **21**(1) (2003), 5–19.
- 12 [10] J.A. Goguen and J. Meseguer, Security Policies and Security Models, in: SOSP, 1982, pp. 11–20.
- [11] A. Banerjee and D.A. Naumann, Stack-based Access Control and Secure Information Flow, *Journal of Functional Programming* 15(2) (2005), 131–177.
- [12] J. Landauer and T. Redmond, A Lattice of Information, in: 6th IEEE Computer Security Foundations Workshop CSFW'93, Franconia, New Hampshire, USA, June 15-17, 1993, Proceedings, IEEE Computer Society, 1993, pp. 65–
   70.
- [13] H. Chen, A. Tiu, Z. Xu and Y. Liu, A Permission-Dependent Type System for Secure Information Flow Analysis, in: *31st IEEE Computer Security Foundations Symposium, CSF*, IEEE Computer Society, Oxford, United Kingdom, 2018, pp. 218–232.
- <sup>19</sup> [14] Android, Requesting Permissions at Run Time. https://developer.android.com/training/permissions/requesting.html.
- 20 [15] A. Developers, Binder, 2017, online, accessed on 07-July-2017.

8

24

33

- [16] E. Chin, A.P. Felt, K. Greenwood and D. Wagner, Analyzing Inter-application Communication in Android, in: *Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services*, MobiSys '11, New York, NY, USA, 2011, pp. 239–252.
- [17] A. Developers, PermissionChecker | Android Developers, 2017, online, accessed on 07-July-2017.
  - [18] B.C. Pierce, Types and programming languages, MIT Press, 2002. ISBN 978-0-262-16209-8.
- [19] A.O.S. Project, Manifest.permission, Android Open Source Project, [n. d.]. https://developer.android.com/reference/ android/Manifest.permission.html.
   [20] D.E. Drawt, Campb Brand Algorithms for Bachen Function, Maximulation, *IEEE Transactions on Computer 25(8)*
- [20] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation, *IEEE Transactions on Computers* 35(8)
   (1986), 677–691. doi:10.1109/TC.1986.1676819.
- [21] D.E. Knuth, *The Art of Computer Programming*, Vol. 4. Fascicle 1, 1st edn, Addison Wesley Longman Publishing Co., Inc., United States, 2009.
- [22] E.M. Clarke, T.A. Henzinger, H. Veith and R. Bloem (eds), *Handbook of Model Checking*, Springer, 2018. ISBN 978-3-319-10574-1. doi:10.1007/978-3-319-10575-8.
- [23] T.M., R. Sison, E. Pierzchalski and C. Rizkallah, Compositional Verification and Refinement of Concurrent Value Dependent Noninterference, in: 2016 IEEE 29th Computer Security Foundations Symposium (CSF), 2016, pp. 417–431.
  - [24] N. Polikarpova, J. Yang, S. Itzhaky and A. Solar-Lezama, Type-Driven Repair for Information Flow Security, *CoRR* abs/1607.03445 (2016). http://arxiv.org/abs/1607.03445.
- [25] T. Murray, R. Sison, E. Pierzchalski and C. Rizkallah, A Dependent Security Type System for Concurrent Imperative
   Programs, *Archive of Formal Proofs* (2016), http://isa-afp.org/entries/Dependent\_SIFUM\_Type\_Systems.shtml, Formal
   proof development.
- [26] T. Murray, R. Sison, E. Pierzchalski and C. Rizkallah, Compositional Security-Preserving Refinement for Concurrent Imperative Programs, *Archive of Formal Proofs* (2016), http://isa-afp.org/entries/Dependent\_SIFUM\_Refinement.shtml,
   Formal proof development.
- [27] T. Murray, Short Paper: On High-Assurance Information-Flow-Secure Programming Languages, in: *Proceedings of the* 10th ACM Workshop on Programming Languages and Analysis for Security, 2015.
- <sup>41</sup> [28] X. Li, F. Nielson and H. Riis Nielson, Future-dependent Flow Policies with Prophetic Variables, in: *the 2016 ACM Work-shop*, ACM Press, New York, NY, USA, 2016, pp. 29–42.
- [29] D. Zhang, Y. Wang, G.E. Suh and A.C. Myers, A Hardware Design Language for Timing-Sensitive Information-Flow
   Security, in: *the Twentieth International Conference*, ACM Press, New York, New York, USA, 2015, pp. 503–516.
- [30] X. Li, F. Nielson, H.R. Nielson and X. Feng, Disjunctive Information Flow for Communicating Processes., *TGC* (2015).
   [31] L. Lourenço and L. Caires, Dependent Information Flow Types, in: *Proceedings of the 42Nd Annual ACM SIGPLAN*-
- <sup>45</sup> SIGACT Symposium on Principles of Programming Languages, POPL '15, New York, NY, USA, 2015, pp. 317–328.
   <sup>46</sup>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

[32] L. Lourenço and L. Caires, Information Flow Analysis for Valued-Indexed Data Security Compartments, in: Trustworthy Global Computing - 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected Papers, Lecture Notes in Computer Science, Vol. 8358, Springer, 2014, pp. 180–198.

2.0

2.2

- [33] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan and J. Yang, Secure distributed programming with value-dependent types, *Journal of Functional Programming* 23(4) (2013), 402–451.
- [34] J. Yang, K. Yessenov and A. Solar-Lezama, A language for automatically enforcing privacy policies, in: *Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012*, ACM, 2012, pp. 85–96. doi:10.1145/2103656.2103669.
- [35] H. Mantel, D. Sands and H. Sudbrock, Assumptions and Guarantees for Compositional Noninterference, in: *Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, IEEE Computer Society, 2011, pp. 218–232. doi:10.1109/CSF.2011.22.*
- [36] A. Nanevski, A. Banerjee and D. Garg, Verification of Information Flow and Access Control Policies with Dependent Types, in: 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA, IEEE Computer Society, 2011, pp. 165–179.
- [37] N. Swamy, J. Chen and R. Chugh, Enforcing Stateful Authorization and Information Flow Policies in FINE, in: *Programming Languages and Systems, 19th European Symposium on Programming (ESOP)*, Lecture Notes in Computer Science, Vol. 6012, Springer, 2010, pp. 529–549.
- <sup>15</sup> [38] L. Zheng and A.C. Myers, Dynamic security labels and static information flow control., *International Journal of Information Security* **6**(2–3) (2007), 67–84.
- [39] S. Tse and S. Zdancewic, Run-time principals in information-flow type systems, *ACM Trans. Program. Lang. Syst.* 30(1) (2007).
- [40] P. Li and D. Zhang, Towards a Flow- and Path-Sensitive Information Flow Analysis, in: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), 2017, pp. 53–67.
- [41] S. Hunt and D. Sands, On Flow-sensitive Security Types, in: *Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, POPL '06, ACM, New York, NY, USA, 2006, pp. 79–90. ISBN 1-59593-027-2.
- [42] M.D. Ernst, R. Just, S. Millstein, W. Dietl, S. Pernsteiner, F. Roesner, K. Koscher, P.B. Barros, R. Bhoraskar, S. Han,
   P. Vines and E.X. Wu, Collaborative Verification of Information Flow for a High-Assurance App Store, in: *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security*, CCS '14, ACM, New York, NY, USA, 2014, pp. 1092–1104. ISBN 978-1-4503-2957-6.
- [43] A. Nadkarni, B. Andow, W. Enck and S. Jha, Practical DIFC Enforcement on Android, USENIX Security Symposium (2016).
- [44] S. Lortz, H. Mantel, A. Starostin, T. Bahr, D. Schneider and A. Weber, Cassandra: Towards a Certifying App Store for Android, in: *Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones and Mobile Devices*, SPSM '14, New York, NY, USA, 2014, pp. 93–104.
- [45] H. Gunadi, Formal Certification of Non-interferent Android Bytecode (DEX Bytecode), in: *Proceedings of the 2015 20th International Conference on Engineering of Complex Computer Systems (ICECCS)*, ICECCS '15, Washington, DC, USA, 2015, pp. 202–205.
- [46] A. Chaudhuri, Language-based Security on Android, in: *Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security*, PLAS '09, New York, NY, USA, 2009, pp. 1–7.
- [47] G.C. Necula and P. Lee, Proof-Carrying Code, Technical Report, School of Computer Science, Carnegie Mellon University, 1996, CMU-CS-96-165.
- [48] W. Enck, P. Gilbert, B. Chun, L.P. Cox, J. Jung, P.D. McDaniel and A. Sheth, TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones, in: *9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2010)*, 2010, pp. 393–407.
- [49] M.I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen and M. Rinard, Information-Flow Analysis of Android Applica tions in DroidSafe, in: 22nd Annual Network and Distributed System Security Symposium (NDSS 2015), 2015.
- [50] M. Sun, T. Wei and J.C.S. Lui, TaintART: A Practical Multi-level Information-Flow Tracking System for Android Run-Time, in: *Proceedings of the 23rd ACM Conference on Computer and Communications Security*, CCS'16, 2016.
- [51] N. Polikarpova, J. Yang, S. Itzhaky, T. Hance and A. Solar-Lezama, Enforcing Information Flow Policies with Type Targeted Program Synthesis, *arXiv preprint arXiv:1607.03445v2* (2018).
- [52] P. Li and D. Zhang, A derivation framework for dependent security label inference, *Proc. ACM Program. Lang.* 2(OOP SLA) (2018), 115:1–115:26.
- [53] P.M. Rondon, M. Kawaguchi and R. Jhala, Liquid types, in: *Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008*, R. Gupta and S.P. Amarasinghe, eds, ACM, 2008, pp. 159–169. doi:10.1145/1375581.1375602.

- [54] Q. Sun, A. Banerjee and D.A. Naumann, Modular and Constraint-Based Information Flow Inference for an Object-Oriented Language, in: *Static Analysis*, R. Giacobazzi, ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 84– 99. ISBN 978-3-540-27864-1.
   [55] C. Borthe, T. Borthe, and D.A. Nuumann, Dariving on Information Flow Checker and Cortifuing Compiler for Long. *IEEE*.
- <sup>3</sup> [55] G. Barthe, T. Rezk and D.A. Naumann, Deriving an Information Flow Checker and Certifying Compiler for Java., *IEEE Symposium on Security and Privacy* (2006), 230–242.
  - [56] G. Barthe and T. Rezk, Non-interference for a JVM-like language., *TLDI* (2005), 103–112.

6

9

- [57] G. Barthe, D. Pichardie and T. Rezk, A Certified Lightweight Non-interference Java Bytecode Verifier, in: *Proceedings of the 16th European Symposium on Programming*, ESOP'07, Berlin, Heidelberg, 2007, pp. 125–140.
- [58] H. Chen, A. Tiu, Z. Xu and Y. Liu, A Permission-Dependent Type System for Secure Information Flow Analysis, *CoRR* abs/1709.09623 (2017). http://arxiv.org/abs/1709.09623.
  - [59] G. Winskel, *The Formal Semantics of Programming Languages: An Introduction*, MIT Press, Cambridge, MA, USA, 1993. ISBN 0-262-23169-7.
- [60] J. van Rest, D. Boonstra, M. Everts, M. van Rijn and R. van Paassen, *Designing Privacy-by-Design*, in: *Privacy Technologies and Policy: First Annual Privacy Forum, APF 2012, Limassol, Cyprus, October 10-11, 2012, Revised Selected Papers*, B. Preneel and D. Ikonomou, eds, Berlin, Heidelberg, 2014, pp. 55–72.
- <sup>13</sup> [61] D.F.C. Brewer and M.J. Nash, The Chinese Wall security policy, in: *Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on*, 1989, pp. 206–214.
- [62] Y. Takata and H. Seki, Automatic Generation of History-Based Access Control from Information Flow Specification, in:
   Automated Technology for Verification and Analysis: 8th International Symposium, ATVA 2010, Singapore, September 21-24, 2010. Proceedings, A. Bouajjani and W.-N. Chin, eds, Berlin, Heidelberg, 2010, pp. 259–275.
- [63] D. Liu, Bytecode Verification for Enhanced JVM Access Control, in: *Proceedings of the The Second International Conference on Availability, Reliability and Security*, ARES '07, Washington, DC, USA, 2007, pp. 162–172.
- [64] A. Banerjee and D.A. Naumann, A Simple Semantics and Static Analysis for Stack Inspection (2013).
   doi:10.4204/EPTCS.129.17.
- [65] M. Pistoia, A. Banerjee and D.A. Naumann, Beyond Stack Inspection: A Unified Access-Control and Information-Flow Security Model, in: *Proceedings of the 2007 IEEE Symposium on Security and Privacy*, SP '07, Washington, DC, USA, 2007, pp. 149–163.
- [66] T.F. Lunt, Aggregation and inference: facts and fallacies, in: Security and Privacy, 1989. Proceedings., 1989 IEEE Symposium on, 1989, pp. 102–109.
- [67] M. Kennedy and R. Sulaiman, Following the Wi-Fi breadcrumbs: Network based mobile application privacy threats, in: Electrical Engineering and Informatics (ICEEI), 2015 International Conference on, 2015, pp. 265–270.
- [68] C. Marforio, H. Ritzdorf, A. Francillon and S. Capkun, Analysis of the Communication Between Colluding Applications on Modern Smartphones, in: *Proceedings of the 28th Annual Computer Security Applications Conference*, ACSAC '12, New York, NY, USA, 2012, pp. 51–60.
- [69] A. Nanevski, A. Banerjee and D. Garg, Dependent Type Theory for Verification of Information Flow and Access Control
   Policies, ACM Transactions on Programming Languages and Systems (TOPLAS) 35(2) (2013), 6:1–6:41.
- [70] A.C. Myers and B. Liskov, A Decentralized Model for Information Flow Control, *SIGOPS Oper. Syst. Rev.* 31(5) (1997),
   129–142.
- [71] O. Arden, M.D. George, J. Liu, K. Vikram, A. Askarov and A.C. Myers, Sharing Mobile Code Securely with Information Flow Control, *IEEE Symposium on Security and Privacy* (2012), 191–205.
- [72] A.C. Myers, JFlow: Practical Mostly-static Information Flow Control, in: *Proceedings of the 26th ACM SIGPLAN- SIGACT Symposium on Principles of Programming Languages*, POPL '99, New York, NY, USA, 1999, pp. 228–241.
- [73] Z. Fang, W. Han and Y. Li, Permission based Android security: Issues and countermeasures, *Computers & Security* 43(C) (2014), 205–218.
- [74] C. Marforio, A. Francillon and S. Capkun, Application collusion attack on the permission-based security model and its implications for modern smartphone systems, 2011.
- [75] L. Li, A. Bartel, T.F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau and P. McDaniel, IccTA: Detecting Inter-component Privacy Leaks in Android Apps, in: *Proceedings of the 37th International Conference on Software Engineering - Volume 1*, ICSE '15, Piscataway, NJ, USA, 2015, pp. 280–291. ISBN 978-1-4799-1934-5.
- <sup>39</sup> [76] A.P. Felt, E. Chin, S. Hanna, D. Song and D. Wagner, Android permissions demystified (2016), 1–11.
- [77] A. Sabelfeld and D. Sands, Declassification: Dimensions and principles, *Journal of Computer Security* 17(5) (2009), 517–548.
   [70] W. D. L. A. Alama, D. M. Sitter, for a for Equation of the Control of Computer Security 17(5) (2009).
- [78] W.J. Bowman and A. Ahmed, Noninterference for Free, in: *Proceedings of the 20th ACM SIGPLAN International Confer- ence on Functional Programming*, ICFP 2015, ACM, New York, NY, USA, 2015, pp. 101–113. ISBN 978-1-4503-3669 7.
- [79] Y. Shao, Q.A. Chen, Z.M. Mao, J. Ott and Z. Qian, Kratos: Discovering Inconsistent Security Policy Enforcement in the Android Framework, in: 23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016, The Internet Society, 2016.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2.0

21

2.2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

45

| 1        | [80]         | D.E. Denning, A Lattice Model of Secure Information Flow, <i>Communications of the ACM</i> <b>19</b> (5) (1976), 236–243.                                                                   | 1        |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 2        | [81]         | doi:10.1145/360051.360056.<br>B.A. Davey and H.A. Priestley, <i>Introduction to Lattices and Order, Second Edition</i> , Cambridge University Press, Cam-                                   | 2        |
| 3<br>4   | [ <b>0</b> ] | bridge, United Kingdom, 2002. ISBN 978-0-521-78451-1. doi:10.1017/CBO9780511809088.<br>C. Smith, Google isn't fixing a serious Android security flaw for months. http://bgr.com/2017/05/09/ | 3<br>4   |
| 5        | [02]         | android-permissions-security-flaw-android-o/.                                                                                                                                               | 5        |
| 6        |              | Android, Manifest.permission. https://developer.android.com/reference/android/Manifest.permission.html.                                                                                     | 6        |
| 7        | [84]         | E. Duan, DressCode and its potential impact for enterprise, September 2016. http://blog.trendmicro.com/<br>trendlabs-security-intelligence/dresscode-potential-impact-enterprises/.         | 7        |
| 8        | [85]         | M. Kumar, Beware! New Android Malware Infected 2 Million Google Play Store Users. http://thehackernews.com/2017/                                                                            | 8        |
| 9        |              | 04/android-malware-playstore.html.                                                                                                                                                          | 9        |
| 10       |              |                                                                                                                                                                                             | 10       |
| 11       |              |                                                                                                                                                                                             | 11       |
| 12       |              |                                                                                                                                                                                             | 12       |
| 13       |              |                                                                                                                                                                                             | 13       |
| 14       |              |                                                                                                                                                                                             | 14       |
| 15       |              |                                                                                                                                                                                             | 15       |
| 16       |              |                                                                                                                                                                                             | 16       |
| 17       |              |                                                                                                                                                                                             | 17       |
| 18       |              |                                                                                                                                                                                             | 18       |
| 19       |              |                                                                                                                                                                                             | 19       |
| 20       |              |                                                                                                                                                                                             | 20       |
| 21       |              |                                                                                                                                                                                             | 21       |
| 22       |              |                                                                                                                                                                                             | 22       |
| 23       |              |                                                                                                                                                                                             | 23       |
| 24<br>25 |              |                                                                                                                                                                                             | 24<br>25 |
| 26       |              |                                                                                                                                                                                             | 25       |
| 27       |              |                                                                                                                                                                                             | 20       |
| 28       |              |                                                                                                                                                                                             | 28       |
| 29       |              |                                                                                                                                                                                             | 29       |
| 30       |              |                                                                                                                                                                                             | 30       |
| 31       |              |                                                                                                                                                                                             | 31       |
| 32       |              |                                                                                                                                                                                             | 32       |
| 33       |              |                                                                                                                                                                                             | 33       |
| 34       |              |                                                                                                                                                                                             | 34       |
| 35       |              |                                                                                                                                                                                             | 35       |
| 36       |              |                                                                                                                                                                                             | 36       |
| 37       |              |                                                                                                                                                                                             | 37       |
| 38       |              |                                                                                                                                                                                             | 38       |
| 39       |              |                                                                                                                                                                                             | 39       |
| 40       |              |                                                                                                                                                                                             | 40       |
| 41       |              |                                                                                                                                                                                             | 41       |
| 42       |              |                                                                                                                                                                                             | 42       |
| 43       |              |                                                                                                                                                                                             | 43       |
| 44       |              |                                                                                                                                                                                             | 44<br>45 |
| 45<br>46 |              |                                                                                                                                                                                             | 45<br>46 |
| 40       |              |                                                                                                                                                                                             | 40       |

Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis Appendix A. Proofs for Soundness Proof for Lemma 2.1: **Proof. Reflectivity**  $\forall P, t(P) \leq_{\mathscr{L}} t(P)$  therefore  $t \leq_{\mathcal{T}} t$ . **Antisymmetry**  $t \leq_{\mathcal{T}} s \wedge s \leq_{\mathcal{T}} t \iff \forall P, t(P) \leq_{\mathscr{L}} s(P) \wedge s(P) \leq_{\mathscr{L}} t(P)$  therefore  $\forall P, t(P) = s(P)$ , which means that s = t.

**Transitivity** if  $r \leq_{\mathcal{T}} s$  and  $s \leq_{\mathcal{T}} t$ ,  $\forall P, r(P) \leq_{\mathscr{L}} s(P)$  and  $s(P) \leq_{\mathscr{L}} t(P)$  therefore  $r(P) \leq_{\mathscr{L}} t(P)$ , which means that  $r \leq_{\mathcal{T}} t$ . 

2.2

Lemma A.1 Given two base types s and t, it follows that

(a)  $s \leq_{\mathcal{T}} s \sqcup t$  and  $t \leq_{\mathcal{T}} s \sqcup t$ . (b)  $s \sqcap t \leq_{\mathcal{T}} s$  and  $s \sqcap t \leq_{\mathcal{T}} t$ .

**Proof.** Immediately from Definition 2.1.  $\Box$ 

Proof for Lemma 2.2:

**Proof.**  $\forall s, t \in \mathcal{P}$ , according to Lemma A.1,  $s \sqcup t$  is their upper bound. Suppose r is another upper bound of them, i.e.,  $s \leq_{\mathcal{T}} r$  and  $t \leq_{\mathcal{T}} r$ , which means  $\forall P \in \mathscr{P}, (s \sqcup t)(P) = s(P) \sqcup t(P) \leq_{\mathscr{L}} r(P)$ , so  $s \sqcup t \leq r$ . Therefore  $s \sqcup t$  is the least upper bound of  $\{s, t\}$ . Similarly,  $s \sqcap t$  is s and t's greatest lower bound. This makes  $(\mathcal{T}, \leq_{\mathcal{T}})$  a lattice.  $\Box$ 

Proof for Lemma 2.3:

**Proof.** If  $p \in P$ ,  $P \cup \{p\} = P$ , therefore  $(t \uparrow_p)(P) = t(P \cup \{p\}) = t(P)$ . If  $p \notin P$ ,  $P \setminus \{p\} = P$ , therefore  $(t \downarrow_p)(P) = t(P \setminus \{p\}) = t(P)$ .  $\Box$ 

**Lemma A.2** If  $s \leq t$ , then  $s \uparrow_p \leq t \uparrow_p$  and  $s \downarrow_p \leq t \downarrow_p$ .

**Proof.** For  $P \in \mathbf{P}$ , since  $s \leq t$ ,  $s(P \cup \{p\}) \leq t(P \cup \{p\})$  and  $s(P \setminus \{p\}) \leq t(P \setminus \{p\})$ , according to Definition 2.1 and Definition 2.5, the conclusion follows.  $\Box$ 

Proof for Lemma 2.4:

**Proof. Reflexivity** Obviously  $\eta = {}^{l_0}_{\Gamma} \eta$ . 

**Symmetry** Since  $\forall x \in dom(\Gamma).(\Gamma(x) \leq \hat{l}_O \Rightarrow \eta' =_{\Gamma}^{l_O} \eta).$ 

**Transitivity** If  $\eta_1 = \Gamma_{\Gamma}^{l_0} \eta_2$  and  $\eta_2 = \Gamma_{\Gamma}^{l_0} \eta_3$ , for a given  $x \in dom(\Gamma)$ , when  $\Gamma(x) \leq \hat{l_0}$ , we have  $\eta_1(x) = \Gamma_{\Gamma}^{l_0} \eta_1$  $\eta_2(x)$  and  $\eta_2(x) = \eta_3(x)$ . 

- (1) If  $\eta_1(x) \neq \bot$ , then  $\eta_2(x) \neq \bot$  by the first equation, which in return requires  $\eta_3(x) \neq \bot$  by the second equation; by transitivity  $\eta_1(x) = \eta_3(x) (\neq \bot)$ .
- (2) If  $\eta_1(x) = \bot$ , the first equation requires that  $\eta_2(x) = \bot$ , which makes  $\eta_3(x) = \bot$ , therefore both  $\eta_1(x) = \eta_3(x) (= \bot)$ .

2.2

Therefore  $\eta_1(x) = \eta_3(x)$ .  $\square$ **Lemma A.3** If  $\eta = {}^{l_0}_{\Gamma} \eta'$ , then for each  $P \in \mathscr{P}, \eta = {}^{l_0}_{\pi_P(\Gamma)} \eta'$ . **Proof.**  $\forall x \in dom(\Gamma)$ , we need to prove that when  $\pi_P(\Gamma)(x) \leq l_0$  then  $\eta(x) = \eta'(x)$ . But  $\pi_P(\Gamma)(x) =$  $\pi_P(\Gamma(x)) = t(P)$ , from the definition of  $\eta(x) = \eta'(x)$ , the conclusion holds. Proof for Lemma 2.5: **Proof.** We first note that  $dom(\pi_P(\Gamma)) = dom(\pi_P(\Gamma \uparrow_p))$  since both promotion and projection do not change the domain of a typing environment. We then show below that  $\pi_P(\Gamma) = \pi_P(\Gamma \uparrow_p)$ , from which the lemma follows immediately. Given any  $x \in dom(\pi_P(\Gamma \uparrow_p))$ , for any  $Q \in \mathscr{P}$ , we have  $\pi_P(\Gamma \uparrow_p)(x)(Q)$  $=(\pi_P(\Gamma\uparrow_p(x)))(Q)$  by Def.2.8  $= (\Gamma \uparrow_p (x))(P)$ by Def. 2.6  $= \Gamma(x)(P \cup \{p\})$ by Def. 2.5  $=\Gamma(x)(P)$ by assumption  $p \in P$  $=(\pi_P(\Gamma(x)))(Q)$ by Def. 2.6  $=\pi_P(\Gamma)(x)(Q)$ by Def. 2.8 Since this holds for arbitrary *Q*, it follows that  $\pi_P(\Gamma \uparrow_p) = \pi_P(\Gamma)$ .  $\Box$ Proof for Lemma 2.6: **Proof.** Similar to the proof of Lemma 2.5.  $\Box$ Appendix B. Proofs for Type Inference Proof for Lemma 3.1: **Proof.** By induction on  $len(\Lambda)$ . •  $\Lambda = \epsilon$ . Since  $s \cdot \Lambda = s$  and  $t \cdot \Lambda = t$ , the conclusion holds trivially. •  $\Lambda = \oplus p :: \Lambda'$  or  $\Lambda = \oplus p :: \Lambda'$ . Assume it is the former case, the latter is similar. By the hypothesis and Lemma A.2,  $s \uparrow_p \leqslant t \uparrow_p$ . Then by induction,  $s \uparrow_p \cdot \Lambda' \leqslant t \uparrow_p \cdot \Lambda'$ , that is,  $s \cdot \Lambda \leqslant t \cdot \Lambda$ . Proof for Lemma 3.2: **Proof.** We only prove  $t \cdot (\ominus p \oplus q) = t \cdot (\oplus q \ominus p)$ , the other cases are similar. Consider any  $P \in \mathcal{P}$ ,  $t \cdot (\ominus p \oplus q)(P) = ((t \downarrow_p) \uparrow_q)(P) = (t \downarrow_p (P \cup \{q\})) = t((P \cup \{q\}) \setminus \{p\})$ 

and

$$t \cdot (\oplus q \ominus p)(P) = ((t \uparrow_q) \downarrow_p)(P) = t((P \setminus \{p\}) \cup \{q\}) = t((P \cup \{q\}) \setminus (\{p\} \setminus \{q\})) = t((P \cup \{q\}) \setminus \{p\})$$

Therefore,  $t \cdot (\ominus p \oplus q) = t \cdot (\oplus q \ominus p)$ .  $\Box$ 

Proof for **Lemma 3.3**:

**Proof.** By induction on  $len(\Lambda)$ . The conclusion holds when  $len(\Lambda) = 0$  and  $len(\Lambda) = 1$  by Lemma 3.2. Suppose  $len(\Lambda) > 1$ , there exists  $\Lambda'$  and q such that  $\Lambda = \circledast q :: \Lambda'$  where  $\circledast \in \{\oplus, \ominus\}$ .

$$(t \cdot \odot p) \cdot \Lambda = ((t \cdot \odot p) \cdot \Re q) \cdot \Lambda' \text{ (by Definition 3.1)}$$

$$= (t \cdot (\odot p \otimes q)) \cdot \Lambda' \text{ (by Definition 3.1)}$$

$$= (t \cdot (\otimes q \odot p) \cdot \Lambda' \text{ (by Definition 3.1)}$$

$$= ((t \cdot \otimes q) \cdot \Im p) \cdot \Lambda' \text{ (by Definition 3.1)}$$

$$= ((t \cdot \otimes q) \cdot \Lambda') \cdot \odot p \text{ (by induction hypothesis)}$$

$$= (t \cdot (\otimes q :: \Lambda')) \cdot \odot p \text{ (by Definition 3.1)}$$

$$= (t \cdot \Lambda) \cdot \odot p$$

$$\square$$
Proof for Lemma 3.4:
Proof. By case analysis.
$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t(P \cup \{p\} \cup \{p\}) = t(P \cup \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t(P \cup \{p\} \cup \{p\}) = t(P \cup \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \setminus \{p\}) \cup \{p\}) = t(P \cup \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \cup \{p\}) \cup \{p\}) = t(P \cup \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \cup \{p\}) \setminus \{p\}) = t(P \setminus \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \cup \{p\}) \setminus \{p\}) = t(P \setminus \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \setminus \{p\}) \setminus \{p\}) = t(P \setminus \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\bullet ((t \cdot \oplus p) \cdot \oplus p)(P) = t((P \setminus \{p\}) \setminus \{p\}) = t(P \setminus \{p\}) = t \cdot (\oplus p) \text{ for each } P \in \mathscr{P}.$$

$$\Box$$
Proof for Lemma 3.5:
Proof. By induction on  $len(\Lambda)$ . The conclusion holds trivially for  $len(\Lambda) = 0$  and for  $len(\Lambda) = 1$  by Lemma 3.4. When  $len(\Lambda) > 1$  without loss of generality assume  $\Lambda = \oplus p : \Lambda'$ 

Lemma 3.4. When  $len(\Lambda) > 1$ , without loss of generality, assume  $\Lambda = \oplus p :: \Lambda'$ .  $t\cdot\Lambda\cdot\Lambda=(t\cdot(\oplus p\cdot\Lambda'))\cdot(\oplus p::\Lambda')$  $= (t \cdot (\Lambda' \cdot \oplus p)) \cdot (\oplus p :: \Lambda')$  (by Lemma 3.3)  $=(((t \cdot \Lambda') \cdot \oplus p) \cdot \oplus p) \cdot \Lambda'$  (by Definition 3.1)  $= ((t \cdot \Lambda') \cdot \oplus p) \cdot \Lambda'$ (by Lemma 3.4)  $=((t\cdot\oplus p)\cdot\Lambda')\cdot\Lambda'$ (by Lemma 3.3)

$$= (t \cdot \oplus p) \cdot \Lambda'$$
 (by induction hypothesis)  

$$= t \cdot (\oplus p :: \Lambda')$$
 (by Definition 3.1)  

$$= t \cdot \Lambda$$

$$(by Definition 3.1)$$

| Proof for <b>Lemma 3.6</b> :                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Proof.</b> By induction on <i>len</i> (                      | $(\Lambda).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $len(\Lambda) = 0$ : Trivially.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $len(\Lambda) > 0$ : In this case we                            | have $\Lambda = \Lambda' :: \oplus q$ or $\Lambda' :: \oplus q$ , where $len(\Lambda') \ge 0, p \notin \Lambda', q \ne p$ . We only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| prove $\Lambda' :: \oplus q$ , the other                        | her case is similar. Consider any P, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 | $((s \triangleright_p t) \cdot (\Lambda' :: \oplus q))(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 | $= ((s \triangleright_p t) \cdot \Lambda')(P \cup \{q\})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                 | $= ((s \cdot \Lambda') \triangleright_p (t \cdot \Lambda'))(P \cup \{q\}) $ (By induction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 | $=\begin{cases} (s \cdot \Lambda')(P \cup \{q\}) \ p \in P \\ (t \cdot \Lambda')(P \cup \{q\}) \ p \notin P \\ (s \cdot (\Lambda' :: \oplus q))(P) \ p \notin P \\ (t \cdot (\Lambda' :: \oplus q))(P) \ p \notin P \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                 | $\begin{cases} (t \cdot \Lambda')(P \cup \{q\}) \ p \notin P \\ (t \cdot \Lambda')(P \cup \{q\}) \ p \notin P \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                 | $= \begin{cases} (s \cdot (\Lambda' :: \oplus q))(P) & p \in P \\ (s \cdot (\Lambda' :: \oplus q))(P) & p \in P \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                 | $\left( (I \cdot (\Lambda' :: \oplus q))(P) \ p \notin P \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 | $= ((s \cdot (\Lambda' :: \oplus q)) \triangleright_p (t \cdot (\Lambda' :: \oplus q)))(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Proof for Lemma 3.7:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 | mma 3.1 with $\Lambda = \oplus p$ and $\Lambda = \oplus p$ respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\Leftarrow) \forall P \in \mathscr{P},$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (1) If $p \in P$ , by Lemma                                     | 2.3 $s(P) = (s \uparrow_p)(P) = (s \cdot \oplus p)(P)$ and $t(P) = (t \uparrow_p)(P) = (t \cdot \oplus p)(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| since $s \cdot \oplus p \leq t \cdot \oplus p$ ,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (2) If $p \notin P$ , by Lemma 2                                | 2.3, $s(P) = (s \downarrow_p)(P) = (s \cdot \ominus p)(P)$ and $t(P) = (t \downarrow_p)(P) = (t \cdot \ominus p)(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| since $s \cdot \ominus p \leq t \cdot \ominus p$ ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| This is director that                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| This indicates that $s \leq t$ .                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Proof for Lemma 3.8:                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Proof.</b> The proof of (a), by                              | induction on $\Gamma^G$ ; $\Gamma$ ; $\Lambda \vdash_{tr} e : t$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TT-VAR-L/G Trivially.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>TT-OP</b> In this case we have                               | $e e \cong e_1$ op $e_2$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                 | $\Gamma G \cdot \Gamma \cdot \Lambda = \sigma \cdot f = \Gamma G \cdot \Gamma \cdot \Lambda = \sigma \cdot f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                 | $\frac{\Gamma^G; \Gamma; \Lambda \vdash_{tr} e_1 : t_1 \qquad \Gamma^G; \Gamma; \Lambda \vdash_{tr} e_2 : t_2}{\Gamma^G; \Gamma; \Lambda \vdash_{tr} e_1 \text{ op } e_2 : t_1 \sqcup t_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 | $\Gamma^{0}; \Gamma; \Lambda \vdash_{tr} e_{1} \text{ op } e_{2}: t_{1} \sqcup t_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| By induction on e. w                                            | e can get $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e_i : (t_i \cdot \Lambda)$ . By Lemma 3.1 and $t_i \leq t_1 \sqcup t_2$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $t_i \cdot \Lambda \leq (t_1     t_2) \cdot \Lambda \mathbf{R}$ | y subsumption, we have $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e_i : ((t_1 \sqcup t_2) \cdot \Lambda)$ . Finally, by applying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rule (T-OP) we get (                                            | $\Gamma^G, \Gamma \cdot \Lambda) \vdash e_1$ op $e_2 : ((t_1 \sqcup t_2) \cdot \Lambda)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The proof of (b):                                               | $\mathbf{r} , \mathbf{r} , $ |
|                                                                 | have $c \cong x := e$ , x is non-global, and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                 | $\frac{(\mathbf{T}_{1}) \Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e: t  (\mathbf{T}_{2}) t \leq_{\Lambda} \Gamma(x)}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} x := e: \Gamma(x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                                                             | $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (t \cdot \Lambda)$ . From $(\mathbf{T}_2)$ , we get $t \cdot \Lambda \leq (\Gamma \cdot \Lambda)(x)$ . So by subsumption,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | : $(\Gamma \cdot \Lambda)(x)$ . Finally, by Rule (T-ASS), the result follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | o the case of (TT-ASS-L).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>TT-LETVAR</b> In this                                                    | case we have $c \cong$ letvar $x = e$ in $c'$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(\mathbf{T}_1)$                                                            | $\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e: s  (\mathbf{T_2}) \ s \leqslant_{\Lambda} s'  (\mathbf{T_3}) \ \Gamma^{G}; \Gamma[x:s']; \Lambda; A \vdash_{tr} c': t}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} \mathbf{letvar} \ x = e \ \mathbf{in} \ c': t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} $ letvar $x = e$ in $c': t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| By (a) on $(\mathbf{T}_1)$ ,                                                | $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (s \cdot \Lambda)$ . From $(\mathbf{T}_2)$ , we get $s \cdot \Lambda \leq s' \cdot \Lambda$ . So by subsumption,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | $c: s' \cdot \Lambda$ . By induction on ( <b>T</b> <sub>3</sub> ), we have $(\Gamma^G, \Gamma[x:s'] \cdot \Lambda); A \vdash c': t \cdot \Lambda$ , that is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                             | $s' \cdot \Lambda$ ]); $A \vdash c' : t \cdot \Lambda$ . Finally, by Rule (T-LETVAR), the result follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             | n and Rules (T-SUB <sub>c</sub> ), (T-SEQ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - •                                                                         | and Rules $(T-SUB_c)$ , $(T-IF)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                                                                           | ction and Rules (T-SUB <sub>c</sub> ), (T-WHILE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| •                                                                           | se we have $c \cong x := \operatorname{call} B.f(\overline{e})$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(\mathbf{T}_{t}) \mathbf{FT}(\mathbf{B}_{t})$                              | $ = \overline{t} \stackrel{s_b}{\to} t' \qquad (\mathbf{T}_{\bullet}) \Gamma^{G} \cdot \Gamma \cdot \Lambda \vdash \overline{a} \cdot \overline{s} \qquad (\mathbf{T}_{\bullet}) \overline{s} \leq \sqrt{\pi_{\sigma(s)}(t)} \qquad (\mathbf{T}_{\bullet}) \pi_{\sigma(s)}(t') \leq 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(\mathbf{I}_{\mathbf{I}}) \mathbf{I} \mathbf{I} (\mathbf{D}_{\mathbf{J}})$ | $) = \overline{t} \xrightarrow{s_b} t' \qquad (\mathbf{T_2}) \ \Gamma^G; \Gamma; \Lambda \vdash_{tr} \overline{e} : \overline{s} \qquad (\mathbf{T_3}) \ \overline{s} \leqslant_{\Lambda} \overline{\pi_{\Theta(A)}(t)} \qquad (\mathbf{T_4}) \ \pi_{\Theta(A)}(t') \leqslant_{\Lambda} \mathbf{I}$ $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} x := \mathbf{call} \ B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s_b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | $\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} x := \mathbf{call} \ B.f(\bar{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s_b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| By (c) on $(\mathbf{T}_1)$ .                                                | , $\Gamma^G \vdash B.f : \overline{t} \xrightarrow{s_b} t'$ . By (a) on $(\mathbf{T}_2)$ , $(\Gamma^G, \Gamma \cdot \Lambda) \vdash \overline{e} : \overline{s \cdot \Lambda}$ . From $(\mathbf{T}_3)$ , we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| get $\overline{s \cdot \Lambda} \leqslant \overline{(\pi_{e})}$             | $\overline{\overline{\partial}_{\Theta(A)}(t) \cdot \Lambda} = \overline{\pi_{\Theta(A)}(t)}$ . So by subsumption, $(\Gamma^G, \Gamma \cdot \Lambda) \vdash \overline{e} : \overline{\pi_{\Theta(A)}(t)}$ . Similarly,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| from $(\mathbf{T}_4)$ , we                                                  | get $\pi_{\Theta(A)}(t') \leq (\Gamma \cdot \Lambda)(x)$ . Then by Rule (T-CALL), $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash x :=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | $(\Gamma \cdot \Lambda)(x) \sqcap \pi_{\Theta(A)}(s_b)$ . Finally, it is easy to check that $(\Gamma \cdot \Lambda)(x) \sqcap \pi_{\Theta(A)}(s_b) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                             | $(s_b)$ · $\Lambda$ , the result follows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                             | we have $c \cong \mathbf{test}(p) c_1$ else $c_2$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                             | $\Gamma^G; \Gamma; \Lambda :: \oplus p; A \vdash_{tr} c_1 : t_1 \qquad \Gamma^G; \Gamma; \Lambda :: \oplus p; A \vdash_{tr} c_2 : t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                             | $\frac{\Gamma^{G};\Gamma;\Lambda::\oplus p;A\vdash_{tr}c_{1}:t_{1}}{\Gamma^{G};\Gamma;\Lambda;A\vdash_{tr}test(p) c_{1} else c_{2}:t_{1} \triangleright_{p} t_{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                             | $= (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2} (1 + 1)^{1/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| By induction or                                                             | a c: we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dy madetion of                                                              | i c <sub>l</sub> , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(\mathbf{D}G \mathbf{D}) \wedge \mathbf{A}$                                | $(\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}_{\mathbf{T}}_{\mathbf{T}_{\mathbf{T}}}}}}}}}}$ |
| $(1, 1, 1, \cdot)$                                                          | $(\oplus p)); A \vdash c_1 : (t_1 \cdot (\Lambda :: \oplus p))  (\Gamma^G, \Gamma \cdot (\Lambda :: \oplus p)); A \vdash c_2 : (t_2 \cdot (\Lambda :: \oplus p)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                             | lent to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| which is equiva                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| which is equiva                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -                                                                           | $(\Gamma \cdot \Lambda) \uparrow_p); A \vdash c_1 : (t_1 \cdot \Lambda) \uparrow_p  (\Gamma^G, (\Gamma \cdot \Lambda) \downarrow_p); A \vdash c_2 : (t_2 \cdot \Lambda) \downarrow_p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                                                           | $(\Gamma \cdot \Lambda) \uparrow_p); A \vdash c_1 : (t_1 \cdot \Lambda) \uparrow_p  (\Gamma^G, (\Gamma \cdot \Lambda) \downarrow_p); A \vdash c_2 : (t_2 \cdot \Lambda) \downarrow_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(\Gamma^{G},$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $(\Gamma^{G},$                                                              | $(\Gamma \cdot \Lambda) \uparrow_p); A \vdash c_1 : (t_1 \cdot \Lambda) \uparrow_p  (\Gamma^G, (\Gamma \cdot \Lambda) \downarrow_p); A \vdash c_2 : (t_2 \cdot \Lambda) \downarrow_p)$<br>) $\uparrow_p \triangleright_p (t_2 \cdot \Lambda) \downarrow_p$ . By Rule (T-CP), we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(\Gamma^{G},$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

2.2

Since  $\Lambda$  is collected from the context of c and there are no nested checks of p, we have  $p \notin \Lambda$ . Let's consider any *P*. If  $p \in P$ , then  $\begin{aligned} t'(P) &= (t_1 \cdot \Lambda) \uparrow_p (P) & (p \in P) \\ &= (t_1 \cdot \Lambda)(P) & (\text{Lemma 2.3}) \\ &= ((t_1 \cdot \Lambda) \triangleright_p (t_2 \cdot \Lambda))(P) & (p \in P) \\ &= ((t_1 \triangleright_p t_2) \cdot \Lambda)(P) & (\text{Lemma 3.6}) \end{aligned}$ Similarly, if  $p \notin P$ ,  $t'(P) = ((t_1 \triangleright_p t_2) \cdot \Lambda)(P)$ . Therefore,  $t' = (t_1 \triangleright_p t_2) \cdot \Lambda$  and thus the result follows. The proof of (c): Clearly, we have c: s. Finally, by Rule (T-FUN), the result follows.  $\Box$ (a) If  $(\Gamma^{G}, \Gamma) \vdash e : t$ , then  $(\Gamma^{G}, \Gamma \cdot \Lambda) \vdash e : (t \cdot \Lambda)$ 2.2 (b) If  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ , then  $(\Gamma^G, \Gamma \cdot \Lambda)$ ;  $A \vdash c : (t \cdot \Lambda)$ . **Proof.** The proof of (a) : by induction on  $(\Gamma^G, \Gamma) \vdash e : t$ . T-VAR-L/G Trivially. **T-SUB**<sub>e</sub> In this case we have the following derivation 

 $\frac{\Gamma^{G}; [\overline{x}:\overline{t},r:t']; \epsilon; B \vdash_{tr} c: s_{b} \quad s \leqslant s_{b}}{\Gamma^{G} \vdash_{tr} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{t} \xrightarrow{s} t'}$ Applying (b) on c,  $(\Gamma^G, [\bar{x} : \bar{t}, r : t']); B \vdash c : s_b$ . By subsumption, we also have  $(\Gamma^G, [\bar{x} : \bar{t}, r : t']); B \vdash c$ To prove the completeness, we need to prove some auxiliary lemmas. **Lemma B.1** Let  $\Lambda$  be the permission trace collected from the context of e or c. **T-OP** In this case we have  $e \cong e_1$  op  $e_2$  and the following derivation  $\frac{(\Gamma^G, \Gamma) \vdash e_1 : t \quad (\Gamma^G, \Gamma) \vdash e_2 : t}{(\Gamma^G, \Gamma) \vdash e_1 \text{ op } e_2 : t}$ By induction on  $e_i$ ,  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e_i : (t \cdot \Lambda)$ . By Rule (T-OP), we have  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e_1$  op  $e_2 : (t \cdot \Lambda)$ .  $\frac{(\mathbf{T1}) (\Gamma^G, \Gamma) \vdash e : s \quad (\mathbf{T2}) \ s \leqslant t}{(\Gamma^G, \Gamma) \vdash e : t}$ 

By induction on (**T1**),  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash_{tr} e : (s \cdot \Lambda)$ . From (**T2**) and Lemma 3.1, we get  $s \cdot \Lambda \leq t \cdot \Lambda$ . So by subsumption, the result follows. The proof of (b): by induction on  $(\Gamma^G, \Gamma)$ ;  $A \vdash c : t$ . **T-ASS-L** In this case we have  $c \cong x := e$ , x is non-global, and the following derivation  $\frac{(\Gamma^G, \Gamma) \vdash e : \Gamma(x)}{(\Gamma^G, \Gamma) : A \vdash x := e : \Gamma(x)}$ By (a) on e,  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (\Gamma \cdot \Lambda)(x)$ . Then by Rule (T-ASS-L), the result follows. 

**T-ASS-G** similarly to the case of (T-ASS-L). **T-LETVAR** In this case we have  $c \cong$  letvar x = e in c' and the following derivation  $\frac{(\Gamma^G, \Gamma) \vdash e: s \quad (\Gamma^G, \Gamma[x:s]); A \vdash c': t}{(\Gamma^G, \Gamma) \cdot A \vdash \text{letvar } x = e \text{ in } c': t}$ By (a) on e,  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (s \cdot \Lambda)$ . By induction on c,  $(\Gamma^G, (\Gamma[x : s]) \cdot \Lambda); A \vdash c' : (t \cdot \Lambda)$ , that is  $(\Gamma^G, (\Gamma \cdot \Lambda)[x : s \cdot \Lambda]); A \vdash c' : (t \cdot \Lambda)$ . Then by Rule (T-LETVAR), the result follows. **T-SEQ** By induction and Rule (T-SEQ). **T-IF** By induction and Rule (T-IF). T-WHILE By induction and Rule (T-WHILE). **T-CALL** in this case we have  $c \cong x := \text{call } B.f(\overline{e})$  and the following derivation (**T1**)  $(\Gamma^G, \Gamma) \vdash \overline{e} : \overline{\pi_{\Theta(A)}(t)}$   $FT(B.f) = \overline{t} \xrightarrow{s} t'$  (**T2**)  $\pi_{\Theta(A)}(t') \leq \Gamma(x)$  $(\Gamma^G, \Gamma); A \vdash x := \textbf{call } B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s)$ By (a) on (**T1**),  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash \overline{e} : \overline{\pi_{\Theta(A)}(t) \cdot \Lambda}$ , that is,  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash \overline{e} : \overline{\pi_{\Theta(A)}(t)}$ . From (**T2**) and Lemma 3.1,  $\pi_{\Theta(A)}(t') \cdot \Lambda \leq (\Gamma \cdot \Lambda)(x)$ , that is,  $\pi_{\Theta(A)}(t') \leq (\Gamma \cdot \Lambda)(x)$ . Then by Rule (T-CALL),  $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash x :=$ call  $B.f(\overline{e}) : (\Gamma \cdot \Lambda)(x) \sqcap \pi_{\Theta(A)}(s)$ . Finally, it is each to check that  $(\Gamma \cdot \Lambda)(x) \sqcap \pi_{\Theta(A)}(s) = (\Gamma(x) \sqcap \pi_{\Theta(A)}(s)) \cdot \Lambda$ , then the result follows. 2.2 **T-CP** In this case we have  $c \cong \text{test}(p) c_1$  else  $c_2$  and the following derivation  $\frac{(\Gamma^G, \Gamma\uparrow_p); A \vdash c_1 : t_1 \qquad (\Gamma^G, \Gamma\downarrow_p); A \vdash c_2 : t_2}{(\Gamma^G, \Gamma); A \vdash \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2 : t_1 \triangleright_p t_2}$ By induction on  $c_1$  and  $c_2$ , we have  $(\Gamma^G, (\Gamma \uparrow_n) \cdot \Lambda); A \vdash c_1 : t_1 \cdot \Lambda \quad (\Gamma^G, (\Gamma \downarrow_n) \cdot \Lambda); A \vdash c_2 : t_2 \cdot \Lambda$ Since  $\Lambda$  is collected from the context of c and there are no nested checks of p, we have  $p \notin \Lambda$ . By Lemma 3.3,  $(\Gamma \uparrow_p) \cdot \Lambda = (\Gamma \cdot \Lambda) \uparrow_p$  and  $(\Gamma \downarrow_p) \cdot \Lambda = (\Gamma \cdot \Lambda) \downarrow_p$ . Then by Rule (T-CP), we have  $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2 : (t_1 \cdot \Lambda) \triangleright_p (t_2 \cdot \Lambda).$ Finally, by Lemma 3.6,  $(t_1 \triangleright_p t_2) \cdot \Lambda = (t_1 \cdot \Lambda) \triangleright_p (t_2 \cdot \Lambda)$ , and thus the result follows. **T-SUB**<sub>c</sub> In this case we have the following derivation (**T1**)  $(\Gamma^G, \Gamma); A \vdash c : s$  (**T2**)  $t \leq s$  $(\Gamma^G, \Gamma); A \vdash c : t$ By induction on (T1),  $(\Gamma^G, \Gamma \cdot \Lambda)$ ;  $A \vdash c : (s \cdot \Lambda)$ . From (T2) and by Lemma 3.1,  $t \cdot \Lambda \leq s \cdot \Lambda$ . Then by subsumption, the result follows. 

Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis (a) If  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e: t$ , then  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e: (t \cdot \Lambda)$ Lemma B.2 (b) If  $(\Gamma^G, \Gamma \cdot \Lambda)$ ;  $A \vdash c : t$ , then  $(\Gamma^G, \Gamma \cdot \Lambda)$ ;  $A \vdash c : (t \cdot \Lambda)$ . **Proof.** By Lemma B.1 and Lemma 3.5.  $\Box$ Proof for Lemma 3.9: **Proof.** The proof of (a) : by induction on  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : t \cdot \Lambda$ . **T-VAR-L** Trivially with  $s = \Gamma(x)$ . **T-VAR-G** In this case we have  $e \cong x$ , x is global, and the following derivation  $\frac{(\Gamma^G, \Gamma \cdot \Lambda) \vdash x : \Gamma^G(x) \qquad \Gamma^G(x) \leqslant t \cdot \Lambda}{(\Gamma^G, \Gamma \cdot \Lambda) \vdash x : t \cdot \Lambda}$ Take s as  $\Gamma^{G}(x)$  and the result follows trivially. **T-OP** In this case we have  $e \cong e_1$  op  $e_2$  and the following derivation  $\frac{(\Gamma^{G}, \Gamma \cdot \Lambda) \vdash e_{1} : t \cdot \Lambda \qquad (\Gamma^{G}, \Gamma \cdot \Lambda) \vdash e_{2} : t \cdot \Lambda}{(\Gamma^{G}, \Gamma \cdot \Lambda) \vdash e_{1} \text{ op } e_{2} : t \cdot \Lambda}$ 2.0 By induction on  $e_i$ , there exists  $s_i$  such that  $\Gamma^G$ ;  $\Gamma$ ;  $\Lambda \vdash_{tr} e_i : s_i$  and  $s_i \leq_{\Lambda} t$ . By Rule (TT-OP), we 2.2 2.2 have  $\Gamma^G$ ;  $\Gamma$ ;  $\Lambda \vdash_{tr} e_1$  op  $e_2 : s_1 \sqcup s_2$ . Moreover, it is clear that  $s_1 \sqcup s_2 \leq_{\Lambda} t$ . Therefore, the result follows. **T-SUB** $_{e}$  In this case we have the following derivation  $\frac{(\mathbf{T1}) (\Gamma^G, \Gamma \cdot \Lambda) \vdash e : s \quad (\mathbf{T2}) \ s \leqslant t \cdot \Lambda}{(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : t \cdot \Lambda}$ Applying Lemma B.2 on (T1),  $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : s \cdot \Lambda$ . Then by induction, there exists s' such that  $\Gamma^G; \Gamma; \Lambda \vdash_{tr} e: s' \text{ and } s' \leq_{\Lambda} s.$  From (**T2**) and Lemma 3.5, we can get  $s' \leq_{\Lambda} t \cdot \Lambda \leq_{\Lambda} t.$  Thus the result follows. The proof of (b): by induction on  $(\Gamma^G, \Gamma \cdot \Lambda)$ ;  $A \vdash c : t \cdot \Lambda$ . **T-ASS-L** In this case we have  $c \cong x := e$ , x is non-global, and the following derivation  $\frac{(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : (\Gamma \cdot \Lambda)(x)}{(\Gamma^G, \Gamma \cdot \Lambda); A \vdash x := e : (\Gamma \cdot \Lambda)(x)}$ By (a) on *e*, there exists *s* such that  $\Gamma^G$ ;  $\Gamma$ ;  $\Lambda \vdash_{tr} e : s$  and  $s \leq_{\Lambda} \Gamma(x)$ . Then by Rule (TT-ASS-L),  $\Gamma^G$ ;  $\Gamma$ ;  $\Lambda$ ;  $A \vdash_{tr} x := e : \Gamma(x)$ , and thus the result follows. **T-ASS-G** In this case we have  $c \cong x := e$ , x is global, and the following derivation  $\begin{array}{c} (\mathbf{T_1}) \ (\Gamma^G, \Gamma \cdot \Lambda) \vdash e : \Gamma^G(x) \\ \hline (\Gamma^G, \Gamma \cdot \Lambda); A \vdash x := e : \Gamma^G(x) \\ \hline (\Gamma^G, \Gamma \cdot \Lambda); A \vdash x := e : t \cdot \Lambda \end{array}$ 

| Ar           | pplying Lemma B.2 on ( <b>T1</b> ), $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : \Gamma^G(x) \cdot \Lambda$ . And by (a) on <i>e</i> , there exists <i>s</i> such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|              | For $\Gamma = 1$ and $S = 1$ .<br>For $\Gamma = 1$ , $\Gamma = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | nally, from ( <b>T</b> <sub>2</sub> ), we have $t \leq_{\Lambda} \Gamma^{G}(x)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|              | <b>AR</b> In this case we have $c \cong$ letvar $x = e$ in $c'$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | $\frac{(\mathbf{T_1}) (\Gamma^G, \Gamma \cdot \Lambda) \vdash e : s  (\mathbf{T_2}) (\Gamma^G, (\Gamma \cdot \Lambda)[x : s]); A \vdash c' : t \cdot \Lambda}{(\Gamma^G, \Gamma \cdot \Lambda); A \vdash \mathbf{letvar} \ x = e \ \mathbf{in} \ c' : t \cdot \Lambda}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|              | $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash$ letvar $x = e$ in $c' : t \cdot \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | polying Lemma B.2 on $(\mathbf{T}_1)$ , $(\Gamma^G, \Gamma \cdot \Lambda) \vdash e : s \cdot \Lambda$ . Then by (a), there exists s' such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|              | $(\Gamma_{r}^{G}, \Gamma_{r}) \mapsto (\Gamma_{r}^{G}, \Gamma_{r}) \mapsto (\Gamma_{r})  |     |
| (t)          | $(\Lambda) \cdot \Lambda$ . And by Lemma 3.5, we have $(\Gamma^G, \Gamma[x : s] \cdot \Lambda); A \vdash c' : (t \cdot \Lambda)$ . Then by induction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|              | ere exists t' such that $\Gamma^G$ ; $\Gamma[x : s]$ ; $\Lambda; A \vdash_{tr} c' : t'$ and $t \leq_{\Lambda} t'$ . Finally, by Rule (TT-LETVAR),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|              | the have $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} $ <b>letvar</b> $x = e$ in $c' : t'$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | LE By induction and Rule (TT-WHILE).<br>By induction and Rule (TT-SEQ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|              | In this case we have $c \cong x := $ <b>call</b> $B.f(\overline{e})$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|              | The first case we have $e = x = can b$ . $f(e)$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|              | $FT(B.f) = \overline{t_p} \xrightarrow{t_b} t_r \qquad (\mathbf{T1}) \ (\Gamma^G, \Gamma \cdot \Lambda) \vdash \overline{e} : \overline{\pi_{\Theta(A)}(t_p)} \qquad (\mathbf{T2}) \ \pi_{\Theta(A)}(t_r) \leqslant (\Gamma \cdot \Lambda)(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|              | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [3] |
|              | $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash x := \textbf{call } B.f(\overline{e}) : t \cdot \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| wł           | here $t' = (\Gamma \cdot \Lambda)(x) \sqcap \pi_{\Theta(A)}(t_b)$ and ( <b>T3</b> ) is $t \cdot \Lambda \leq t'$ . From ( <b>T1</b> ), we have $(\Gamma^G, \Gamma \cdot \Lambda) \vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|              | $\overline{(\pi_{\Theta(A)}(t_p) \cdot \Lambda)}$ . Then by (a), there exists $\overline{t_e}$ such that $\Gamma^G; \Gamma; \Lambda \vdash_{tr} \overline{e} : \overline{t_e}$ and $\overline{t_e} \leq_{\Lambda} \overline{\pi_{\Theta(A)}(t_p)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|              | om ( <b>T2</b> ), we have $\pi_{\Theta(A)}(t_r) \leq_{\Lambda} \Gamma(x)$ . Then by Rule (TT-CALL), $\Gamma; \Lambda; A \vdash x := \text{call } B.f(\overline{e}) :$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|              | $x \cap \pi_{\Theta(A)}(t_b)$ . Finally, it is easy to check $t \leq_{\Lambda} \Gamma(x) \cap \pi_{\Theta(A)}(t_b)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| I-CP In      | this case we have $c \cong \mathbf{test}(p) c_1$ else $c_2$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|              | $(\Gamma^G, (\Gamma \cdot \Lambda) \uparrow_p); A \vdash c_1 : t_1 \qquad (\Gamma^G, (\Gamma \cdot \Lambda) \downarrow_p); A \vdash c_2 : t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|              | $\frac{(\Gamma^{G}, (\Gamma \cdot \Lambda) \uparrow_{p}); A \vdash c_{1} : t_{1} \qquad (\Gamma^{G}, (\Gamma \cdot \Lambda) \downarrow_{p}); A \vdash c_{2} : t_{2}}{(\Gamma^{G}, \Gamma \cdot \Lambda); A \vdash \mathbf{test}(p) c_{1} \mathbf{else} c_{2} : t_{1} \triangleright_{p} t_{2}} \qquad (\mathbf{T1}) t \cdot \Lambda \leqslant t_{1} \triangleright_{p} t_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2 : t \cdot \Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| CL           | early, $(\Gamma \cdot \Lambda) \uparrow_p = \Gamma \cdot (\Lambda :: \oplus p)$ and $(\Gamma \cdot \Lambda) \downarrow_p = \Gamma \cdot (\Lambda :: \oplus p)$ . Applying Lemma B.2 on $c_1$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|              | with $\Lambda :: \oplus p$ and $\Lambda :: \oplus p$ respectively, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| $c_2$        | when $f_1 \dots \oplus p$ and $f_1 \dots \oplus p$ respectively, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
|              | $(\Gamma^G, \Gamma \cdot (\Lambda :: \oplus p)); A \vdash c_1 : t_1 \cdot (\Lambda :: \oplus p)  (\Gamma^G, \Gamma \cdot (\Lambda :: \oplus p)); A \vdash c_2 : t_2 \cdot (\Lambda :: \oplus p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|              | $(\mathbf{r},\mathbf{r}) = (\mathbf{r} \cdots \oplus p)(\mathbf{r} \cdots \oplus p)  (\mathbf{r},\mathbf{r}) = (\mathbf{r} \cdots \oplus p)(\mathbf{r} \cdots \oplus p)(\mathbf{r} \cdots \oplus p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| By           | $\gamma$ induction, there exist $s_1$ and $s_2$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| -            | $F_{r}$ induction, there exist $s_{1}$ and $s_{2}$ such that<br>$F_{r}$ ; $(\Lambda :: \oplus p)$ ; $A \vdash_{tr} c_{1} : s_{1}$ with $t_{1} \leq_{\Lambda :: \oplus p} s_{1}  \Gamma^{G}$ ; $\Gamma$ ; $(\Lambda :: \oplus p)$ ; $A \vdash_{tr} c_{2} : s_{2}$ with $t_{2} \leq_{\Lambda :: \oplus p} s_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| $\Gamma^{G}$ | $F_{r}$ ; $(\Lambda ::: \oplus p)$ ; $A \vdash_{tr} c_{1} : s_{1}$ with $t_{1} \leq_{\Lambda ::: \oplus p} s_{1}  \Gamma^{G}$ ; $\Gamma$ ; $(\Lambda ::: \oplus p)$ ; $A \vdash_{tr} c_{2} : s_{2}$ with $t_{2} \leq_{\Lambda ::: \oplus p} s_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| $\Gamma^{G}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $\Gamma^{G}$ | $F_{r}$ ; $(\Lambda ::: \oplus p)$ ; $A \vdash_{tr} c_{1} : s_{1}$ with $t_{1} \leq_{\Lambda ::: \oplus p} s_{1}  \Gamma^{G}$ ; $\Gamma$ ; $(\Lambda ::: \oplus p)$ ; $A \vdash_{tr} c_{2} : s_{2}$ with $t_{2} \leq_{\Lambda ::: \oplus p} s_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |

The remaining is to prove  $t \cdot \Lambda \leq (s_1 \triangleright_p s_2) \cdot \Lambda$ . Since  $\Lambda$  is collected from the context of c and there are no nested checks of p, we have  $p \notin \Lambda$ . Consider any P. If  $p \in P$ , then  $((s_1 \triangleright_p s_2) \cdot \Lambda)(P) = ((s_1 \cdot \Lambda) \triangleright_p (s_2 \cdot \Lambda))(P)$  (Lemma 3.6)  $= (s_1 \cdot \Lambda)(P)$  $(p \in P)$  $= (s_1 \cdot (\Lambda :: \oplus p))(P)$ (Lemma 2.3) $\geq (t_1 \cdot (\Lambda :: \oplus p))(P)$  $(t_1 \leq A ::\oplus p \ s_1)$  $= (t_1 \cdot \Lambda)(P)$ (Lemma 2.3)  $= ((t_1 \cdot \Lambda) \triangleright_p (t_2 \cdot \Lambda))(P) \ (p \in P)$  $=((t_1 \triangleright_p t_2) \cdot \Lambda)(P)$ (Lemma 3.6)  $\geq ((t \cdot \Lambda) \cdot \Lambda)(P)$ **(T1)**  $= (t \cdot \Lambda)(P)$ (Lemma 3.5) Similarly, if  $p \notin P$ , we also have  $(t \cdot \Lambda)(P) \leq ((s_1 \triangleright_p s_2) \cdot \Lambda)(P)$ . Therefore, the result follows. **T-SUB**<sub>c</sub> In this case we have the following derivation  $\frac{(\mathbf{T1}) (\Gamma^{G}, \Gamma \cdot \Lambda); A \vdash c : s \quad (\mathbf{T2}) t \cdot \Lambda \leqslant s}{(\Gamma^{G}, \Gamma \cdot \Lambda); A \vdash c : t \cdot \Lambda}$ where (T1) does not end of (T-ASS-G), (T-CALL) or (T-CP). Applying Lemma B.2 on (T1), 2.0  $(\Gamma^G, \Gamma \cdot \Lambda); A \vdash c : s \cdot \Lambda$ . Then by induction, there exists s' such that  $\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} c : s'$  and  $s \leq_{\Lambda} s'$ . From (**T2**) and by Lemma 3.1, we can get  $t \leq_{\Lambda} s \leq_{\Lambda} s'$ . Thus the result follows. 2.2 2.2 The proof of (c): Clearly, we have  $\frac{(\Gamma^G, [\overline{x} : \overline{t}, r : t']); B \vdash c : s_b}{\Gamma^G \vdash B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{t} \xrightarrow{s_b} t'}$ By (b) on *c*, there exists  $t_b$  such that  $\Gamma^G$ ;  $[\bar{x} : \bar{t}, r : t']$ ;  $\epsilon$ ;  $B \vdash_{tr} c : t_b$  and  $s_b \leq_{\epsilon} t_b$ . Thus by Rule (TT-FUN),  $\Gamma^{G} \vdash_{tr} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{t} \xrightarrow{s_{b}} t'$ Proof for Lemma 3.10: **Proof.** The proof of (a): by induction on the derivation of  $\Gamma^G$ ;  $\Gamma$ ;  $\Lambda \vdash_{cg} e : t \rightsquigarrow C$ . **TG-VAR-L** In this case we have x is non-global and the following derivation  $\Gamma^G; \Gamma; \Lambda \vdash_{cg} x : \Gamma(x) \rightsquigarrow \emptyset$ Clearly, for any  $\theta$ ,  $\theta \models \emptyset$ . By Rule (TT-VAR), we have  $\Gamma^{G}\theta:\Gamma\theta:\Lambda:A\vdash_{tr} x:\Gamma\theta(x)$ 

**TG-VAR-G** Similarly to the case of (TG-VAR-L). **TG-OP** In this case we have  $e \cong e_1$  op  $e_2$  and the following derivation  $\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{cg} e_{1} : t_{1} \rightsquigarrow C_{1} \qquad \Gamma^{G}; \Gamma; \Lambda \vdash_{cg} e_{2} : t_{2} \rightsquigarrow C_{2}}{\Gamma^{G}; \Gamma; \Lambda \vdash_{cg} e_{1} \text{ op } e_{2} : t_{1} \sqcup t_{2} \rightsquigarrow C_{1} \cup C_{2}}$ Since  $\theta \models C_1 \cup C_2$ ,  $\theta \models C_1$  and  $\theta \models C_2$ . Then by induction on  $e_i$ ,  $\Gamma^G \theta$ ;  $\Gamma \theta$ ;  $\Lambda \vdash_{tr} e_i : t_i \theta$ . So by Rule (TT-OP), we have  $\Gamma^{G}\theta$ ;  $\Gamma\theta$ ;  $\Lambda \vdash_{tr} e_1$  op  $e_2 : t_1\theta \sqcup t_2\theta$ . Clearly,  $t_1\theta \sqcup t_2\theta = (t_1 \sqcup t_2)\theta$ . The proof of (b): **TG-ASS-L** In this case we have  $c \cong x := e$ , x is non-global, and the following derivation  $\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{cg} e : t \rightsquigarrow C_{e}}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{cg} x := e : \Gamma(x) \rightsquigarrow C_{e} \cup \{(\Lambda, t \leqslant \Gamma(x))\}}$ Since  $\theta \models C_e \cup \{(\Lambda, t \leqslant \Gamma(x))\}, \theta \models C_e \text{ and } t\theta \leqslant_{\Lambda} \Gamma(x)\theta$ . By (a) on  $e, \Gamma^G \theta; \Gamma \theta; \Lambda \vdash_{tr} e : t\theta$ . By Rule (TT-ASS),  $\Gamma^{G}\theta$ ;  $\Gamma\theta$ ;  $\Lambda$ ;  $A \vdash_{tr} x := e : \Gamma\theta(x)$ . TG-ASS-L Similarly to the case of (TG-ASS-G). **TG-LETVAR** In this case we have  $c \cong$  letvar x = e in c' and the following derivation  $\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{cg} e : s \rightsquigarrow C_{1} \qquad \Gamma^{G}; \Gamma[x : \alpha]; \Lambda; A \vdash_{cg} c' : t \rightsquigarrow C_{2} \qquad C = C_{1} \cup C_{2} \cup \{(\Lambda, s \leqslant \alpha)\}}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{cg} \text{letvar } x = e \text{ in } c : t \rightsquigarrow C}$ 2.2 Since  $\theta \models C$ ,  $\theta \models C_1$ ,  $\theta \models C_2$ , and  $s\theta \leq_{\Lambda} \theta(\alpha)$ . By (a) on e,  $\Gamma^G \theta$ ;  $\Gamma \theta$ ;  $\Lambda \vdash_{tr} e : s\theta$ . By induc-tion on c',  $\Gamma^{G}\theta$ ;  $\Gamma\theta[x:\theta(\alpha)]$ ;  $\Lambda; A \vdash_{tr} c': t\theta$ . Finally, by Rule (TT-LETVAR),  $\Gamma^{G}\theta$ ;  $\Gamma\theta; \Lambda; A \vdash_{tr}$ letvar x = e in  $c : t\theta$ . **TG-CALL** In this case we have  $c \cong x := \text{call } B.f(\overline{e})$  and the following derivation  $\Gamma^{G}; \Gamma; \Lambda \vdash_{c_{\mathcal{B}}} \overline{e} : \overline{s} \rightsquigarrow \mid \mid \overline{C}$  $FT_C(B,f) = (\bar{t} \xrightarrow{s_b} t', C_f)$  $FT_{C}(B.f) = (\overline{t} \xrightarrow{s_{O}} t', C_{f}) \qquad \Gamma^{G}; \Gamma; \Lambda \vdash_{cg} \overline{e} : \overline{s} \rightsquigarrow \bigcup C_{e}$   $C_{a} = \{(\Lambda, \overline{s} \leqslant \overline{\pi_{\Theta(A)}(t)}), (\Lambda, \pi_{\Theta(A)}(t') \leqslant \Gamma(x))\} \qquad C = C_{f} \cup \bigcup \overline{C_{e}} \cup C_{a}$   $\Gamma^{G}; \Gamma; \Lambda; A \vdash_{cg} x := \textbf{call } B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(s_{b}) \rightsquigarrow C$ Since  $\theta \models C$ , then  $\theta \models C_f$ ,  $\theta \models \overline{C_e}$ ,  $\overline{s\theta} \leqslant_{\Lambda} \overline{\pi_{\Theta(A)}(t\theta)}$ , and  $\pi_{\Theta(A)}(t'\theta) \leqslant_{\Lambda} \Gamma\theta(x)$ ). By (c) on *B*.*f*, we have  $\Gamma^{G}\theta \vdash_{tr} B.f(x) \{ \text{init } r = 0 \text{ in } \{c; \text{ return } r\} \} : \overline{t\theta} \xrightarrow{s_b\theta} t'\theta$ that is,  $FT(B,f) = \overline{t\theta} \xrightarrow{s_b\theta} t'\theta$ . By (a) on  $\overline{e}$ ,  $\Gamma^{G}\theta$ :  $\Gamma\theta$ :  $\Lambda$ :  $A \vdash_{tr} \overline{e} : \overline{s\theta}$ . Finally, by Rule (TT-CALL),  $\Gamma^{G}\theta; \Gamma\theta; \Lambda; A \vdash_{tr} x := \operatorname{call} B.f(\overline{e}) : \Gamma\theta(x) \sqcap \pi_{\Theta(A)}(s_{b}\theta)$ 

 $\frac{\Gamma^{G}; \Gamma; \Lambda :: \oplus p; A \vdash_{cg} c_{1} : t_{1} \rightsquigarrow C_{1} \qquad \Gamma^{G}; \Gamma; \Lambda :: \oplus p; A \vdash_{cg} c_{2} : t_{2} \rightsquigarrow C_{2}}{\Gamma; \Lambda; A \vdash_{cg} \mathbf{test}(p) c_{1} \mathbf{else} c_{2} : t_{1} \triangleright_{p} t_{2} \rightsquigarrow C_{1} \cup C_{2}}$ Since  $\theta \vDash C_{1} \cup C_{2}$ , then  $\theta \vDash C_{1}$  and  $\theta \vDash C_{2}$ . By induction on  $c_{1}$  and  $c_{2}$ , we get  $\Gamma^{G}\theta; \Gamma\theta; (\Lambda :: \oplus p); A \vdash_{tr} c_{1} : t_{1}\theta \qquad \Gamma^{G}\theta; \Gamma\theta; (\Lambda :: \oplus p); A \vdash_{tr} c_{2} : t_{2}\theta$ By Rule (TT-CP), we have  $\Gamma^{G}\theta; \Gamma\theta; \Lambda; A \vdash_{rr} \mathbf{test}(p) c_{1} \mathbf{else} c_{2} : t_{1}\theta \triangleright_{p} t_{2}\theta$ Moreover, it is clear that  $(t_{1} \triangleright_{p} t_{2})\theta = (t_{1}\theta) \triangleright_{p} (t_{2}\theta)$ . others By induction. The proof of (c):  $\frac{\Gamma^{G}; [\bar{x} : \bar{\alpha}, r : \beta]; \epsilon; B \vdash_{cg} c : s \rightsquigarrow C_{b} \qquad C = C_{b} \cup \{(\epsilon, \gamma \leqslant s)\}}{\Gamma^{G}; \vdash_{cg} B.f(x) \{\mathbf{init} r = 0 \mathbf{in} \{c; \mathbf{return} r\}\} : \bar{\alpha} \xrightarrow{\gamma} \beta \rightsquigarrow C}$ As  $\theta \vDash C$ , we have  $\theta \vDash C_{b}$  and  $\theta(\gamma) \leqslant_{\epsilon} s\theta$ . By (b) on c, we have

 $\Gamma^{G}\theta$ :  $[\overline{x}:\overline{\theta(\alpha)},r:\theta(\beta)]$ :  $\epsilon$ :  $B \vdash_{tr} c:s\theta$ 

Finally, by Rule (TT-FUN), we get

$$\Gamma^{G}\theta \vdash_{tr} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{\theta(\alpha)} \xrightarrow{\theta(\gamma)} \theta(\beta)$$

#### Proof for **Lemma 3.11**:

**Proof.** The proof of (a): Let  $\Gamma_0 = \{x \mapsto \alpha_x \mid x \in dom(\Gamma)\}$ ,  $\Gamma_0^G = \{x \mapsto \alpha_x \mid x \in dom(\Gamma^G)\}$ , and  $\theta_0 = \{\alpha_x \mapsto \Gamma(x) \mid x \in dom(\Gamma)\} \cup \{\alpha_x \mapsto \Gamma^G(x) \mid x \in dom(\Gamma^G)\}$ , where  $\alpha_x$ s are fresh type variables. Clearly, we have  $\Gamma_0 \theta_0 = \Gamma$  and  $\Gamma_0^G \theta_0 = \Gamma^G$ . The remaining is to prove that  $\exists C, s. \Gamma_0^G; \Gamma_0; \Lambda \vdash_{cg} e: s \rightsquigarrow C, \ \theta_0 \models C \text{ and } s\theta_0 = t$ (1)**TT-VAR-L** In this case we have  $e \cong x$ , x is non-global, and the following derivation  $\frac{x \in dom(\Gamma)}{\Gamma^G: \Gamma: \Lambda \vdash_{tr} x: \Gamma(x)}$ 

<sup>45</sup> By Rule (TG-VAR), we have  $\Gamma_0^G; \Gamma_0; \Lambda \vdash_{cg} x : \Gamma_0(x) \rightsquigarrow \emptyset$ . Clearly,  $\theta_0 \vDash \emptyset$  and  $\Gamma_0 \theta_0(x) = \Gamma(x)$ . <sup>45</sup> 46

**TG-CP** In this case we have  $c \cong \text{test}(p) c_1$  else  $c_2$  and the following derivation

2.2

 $\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e_{1} : t_{1} \qquad \Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e_{2} : t_{2}}{\Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e_{1} \text{ op } e_{2} : t_{1} \sqcup t_{2}}$ 

 $\Gamma_0^G; \Gamma_0; \Lambda \vdash_{cg} e_i : s_i \rightsquigarrow C_i, \ \theta_0 \models C_i \text{ and } s_i \theta_0 = t_i.$ 

 $\Gamma_0^G; \Gamma_0; \Lambda \vdash_{cg} e_1 \text{ op } e_2 : s_1 \sqcup s_2 \rightsquigarrow C_1 \cup C_2.$ 

**TT-VAR-G** Similarly to the case of (TT-VAR-L).

**TT-OP** In this case we have  $e \cong e_1$  op  $e_2$  and the following derivation

By induction on  $e_i$ , there exist  $C_i$ ,  $s_i$  such that By Rule (TG-OP), we have Moreover, it is clear that  $\theta_0 \models C_1 \cup C_2$  and  $(s_1 \sqcup s_2)\theta_0 = t_1 \sqcup t_2$ . The proof of (b). Let  $\Gamma_0 = \{x \mapsto \alpha_x \mid x \in dom(\Gamma)\}, \Gamma_0^G = \{x \mapsto \alpha_x \mid x \in dom(\Gamma^G)\}$ , and  $\theta_0 = \{\alpha_x \mapsto \alpha_x \mid x \in dom(\Gamma^G)\}$  $\Gamma(x) \mid x \in dom(\Gamma) \} \cup \{\alpha_x \mapsto \Gamma^G(x) \mid x \in dom(\Gamma^G) \}$ , where  $\alpha_x$ s are fresh type variables. Clearly, we have  $\Gamma_0 \theta_0 = \Gamma$  and  $\Gamma_0^G \theta_0 = \Gamma^G$ . Assume that different parameters of different functions have different names, and let  $V_1 \not\equiv V_2$  denote  $V_1 \cap V_2 = \emptyset$ . In the remaining we prove the following statement: (TG-ASS), we get

2.2

 $\exists C, s, \theta, \Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg} c : s \rightsquigarrow C, \ dom(\theta_0) \ \sharp \ dom(\theta), \theta_0 \cup \theta \vDash C, \ \text{and} \ s(\theta_0 \cup \theta) = t \ (2)$ **TT-ASS-L** In this case we have  $c \cong x := e$ , x is non-global, and the following derivation  $\frac{x \in dom(\Gamma) \quad \Gamma^G; \Gamma; \Lambda \vdash_{tr} e: t' \quad t' \leqslant_{\Lambda} \Gamma(x)}{\Gamma; \Lambda; A \vdash_{tr} x := e: \Gamma(x)}$ By (1) on *e*, there exist *C*, *s'* such that  $\Gamma_0^G; \Gamma_0; \Lambda \vdash_{cg} e : s' \rightsquigarrow C, \theta_0 \models C$  and  $s'\theta_0 = t'$ . By Rule  $\Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg} x := e : \Gamma_0(x) \rightsquigarrow C \cup \{(\Lambda, t' \leq \Gamma_0(x))\}.$ 

Take  $\theta = \emptyset$ . Since  $s'\theta_0 = t' \leq_{\Lambda} \Gamma(x) = \Gamma_0 \theta_0(x)$ , then  $\theta_0 \models \{(\Lambda, t' \leq \Gamma_0(x))\}$ , and thus  $\theta_0 \models C \cup \{ (\Lambda, t' \leqslant \Gamma_0(x)) \}.$ 

**TT-ASS-G** Similarly to the case of (TT-ASS-L). **TT-LETVAR** In this case we have  $c \cong$  letvar x = e in c' and the following derivation 

$$\frac{\Gamma^{G}; \Gamma; \Lambda \vdash_{tr} e : t_{e} \qquad t_{e} \leqslant_{\Lambda} t_{e}' \qquad \Gamma^{G}; \Gamma[x : t_{e}']; \Lambda; A \vdash_{tr} c' : t}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} \mathbf{letvar} x = e \mathbf{in} c' : t}$$

By (1) on *e*, there exist  $C_e$ ,  $s_e$  such that  $\Gamma_0^G$ ;  $\Gamma_0$ ;  $\Lambda \vdash_{cg} e : s_e \rightsquigarrow C_e$ ,  $\theta_0 \vDash C_e$  and  $s_e \theta_0 = t_e$ . Let  $\Gamma'_0 = \Gamma_0[x : \alpha_x]$  and  $\theta'_0 = \theta_0 \cup \{\alpha_x \mapsto t'_e\}$ , where  $\alpha_x$  is fresh. By induction on c', there exist  $C', t', \theta$  such that  $\Gamma_0^G; \Gamma'_0; \Lambda; A \vdash_{cg} c' : t' \to C', dom(\theta'_0) \notin dom(\theta), \theta'_0 \cup \theta \models C'$ , and  $t'(\theta'_0 \cup \theta) = t$ . By Rule (TG-LETVAR), we have  $\Gamma_{0}^{G}$ 

$$\Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg}$$
letvar  $x = e$  in  $c : t' \rightsquigarrow C$ 

| 1        | where $C = C_e \cup C' \cup \{(\Lambda, s_e \leq \alpha_x)\}$ . Let $\theta' = \theta \cup \{\alpha_x \mapsto t'_e\}$ . It is clear that $dom(\theta_0) \notin dom(\theta')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1            |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2        | and $\theta_0 \cup \theta' = \theta'_0 \cup \theta$ . From the construction of $\theta'$ ( <i>i.e.</i> , the proof of (2) and (3)), the type variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2            |
| 3        | in $dom(\theta')$ are collected from the types of the functions and local variables, which are fresh. So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3            |
| 4        | we also have $\theta_0 \cup \theta' \vDash C_e$ , $\Gamma_0(\theta_0 \cup \theta') = \Gamma_0 \theta_0 = \Gamma$ and $\Gamma_0^G(\theta_0 \cup \theta') = \Gamma_0^G \theta_0 = \Gamma^G$ . Moreover,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4            |
| 5        | $s_e(\theta_0 \cup \theta') = s_e \theta_0 = t_e \leqslant_{\Lambda} t'_e = \alpha_x(\theta_0 \cup \theta')$ . Therefore, $\theta_0 \cup \theta' \models C$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5            |
| 6        | <b>TT-CALL</b> In this case we have $c \cong x := \text{call } B.f(\overline{e})$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6            |
| 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7            |
| 8        | $FT(B.f) = \overline{t_p} \xrightarrow{t_b} t_r \qquad \Gamma^G; \Gamma; \Lambda \vdash_{tr} \overline{e} : \overline{s_e} \qquad \overline{s_e} \leqslant_{\Lambda} \overline{\pi_{\Theta(A)}(t_p)} \qquad \pi_{\Theta(A)}(t_r) \leqslant_{\Lambda} \Gamma(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8            |
| 9        | $\frac{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} x := \mathbf{call} B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(t_{b})}{\Gamma^{G}; \Gamma; \Lambda; A \vdash_{tr} x := \mathbf{call} B.f(\overline{e}) : \Gamma(x) \sqcap \pi_{\Theta(A)}(t_{b})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9            |
| 10       | $1^{-}, 1^{-}, 1^{-}, 1^{+}, 1^{+}, t_{f} \times \cdots \times t_{f} = t_{f} = 0.5 (t_{f}) + t_{f} \Theta(A)(t_{b})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10           |
| 11       | By (3) on B.f, there exist $\overline{\alpha}, \beta, \gamma, C_f, \theta_f$ such that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11           |
| 12       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12           |
| 13       | $\Gamma_0^G \vdash_{cg} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{ return } r \} \} : \overline{\alpha} \xrightarrow{\gamma} \beta \rightsquigarrow C_f,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13           |
| 14       | 10 + cg D J (w) (m v v = 0 m (v, v v m v)) + v v J,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14           |
| 15       | $\theta_f \vDash C_f$ and $(\overline{\alpha} \xrightarrow{\gamma} \beta) \theta_f = \overline{t_p} \xrightarrow{t_b} t_r$ . So we have $FT_C(B,f) = (\overline{\alpha} \xrightarrow{\gamma} \beta, C_f)$ . Since $\alpha_x$ s are fresh, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15           |
| 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16           |
| 17       | can safely get $dom(\theta_0) \notin dom(\theta_f)$ . Therefore, $\theta_0 \cup \theta_f \models C_f$ and $(\overline{\alpha} \xrightarrow{\gamma} \beta)(\theta_0 \cup \theta_f) = \overline{t_p} \xrightarrow{t_b} t_r$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17           |
| 18       | By (1) on $\overline{e}$ , there exist $\overline{s'_e}, \overline{C_e}$ such that $\Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg} \overline{e} : \overline{s'_e} \rightsquigarrow \overline{C_e}, \theta_0 \vDash \overline{C_e}, and \overline{s'_e(\theta_0)} = \overline{s_e}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18           |
| 19<br>20 | From the construction of $\theta_f$ ( <i>i.e.</i> , the proof of (2) and (3)), the type variables in $dom(\theta_f)$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19<br>20     |
| 20       | collected from the types of functions and local variables, which are fresh. So we also have $\theta_0 \cup \theta_f \models$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20           |
| 22       | $\overline{C_e}, \overline{s'_e(\theta_0 \cup \theta_f)} = \overline{s_e}, \Gamma_0(\theta_0 \cup \theta_f) = \Gamma \text{ and } \Gamma_0^G(\theta_0 \cup \theta_f) = \Gamma^G.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21           |
| 23       | By Rule (TG-CALL), we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22           |
| 24       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24           |
| 25       | $\Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg} x := \mathbf{call} \ B.f(\overline{e}) : \Gamma_0(x) \sqcap \pi_{\Theta(A)}(\gamma) \rightsquigarrow C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25           |
| 26       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26           |
| 27       | where $C' = \{(\Lambda, \overline{s'_e} \leqslant \overline{\pi_{\Theta(A)}(\alpha)}), (\Lambda, \pi_{\Theta(A)}(\beta) \leqslant \Gamma_0(x))\}$ and $C = C_f \cup \bigcup \overline{C_e} \cup C'$ . Since $dom(\theta_f)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27           |
| 28       | are fresh, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28           |
| 29       | $\overline{I(0+1,0)}$ $\overline{I(0,1+0,1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 29           |
| 30       | $\overline{s'_e(\theta_0 \cup \theta_f)} = \overline{s_e} \leqslant_\Lambda \overline{\pi_{\Theta(A)}(t_p)} = \overline{\pi_{\Theta(A)}(\alpha(\theta_0 \cup \theta_f))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30           |
| 31       | $\pi_{\Theta(A)}(eta(	heta_0\cup	heta_f))=\pi_{\Theta(A)}(t_r)\leqslant_\Lambda \Gamma(x)=\Gamma_0(	heta_0\cup	heta_f)(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31           |
| 32       | So $(0, \pm 0) \vdash C'$ and thus $(0, \pm 0) \vdash C$ . Thus the result follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32           |
| 33       | So $(\theta_0 \cup \theta_f) \models C'$ , and thus $(\theta_0 \cup \theta_f) \models C$ . Thus the result follows.<br><b>TT CD</b> in this area we have $a \cong test(n)$ , a single <i>a</i> and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33           |
| 34       | <b>TT-CP</b> In this case we have $c \cong \text{test}(p) c_1$ else $c_2$ and the following derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34           |
| 35       | $\Gamma^G \cdot \Gamma \cdot \Lambda \cdots \oplus n \cdot A \vdash c_1 \cdot t_1 = \Gamma^G \cdot \Gamma \cdot \Lambda \cdots \oplus n \cdot A \vdash c_2 \cdot t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35           |
| 36       | $\frac{\Gamma^G; \Gamma; \Lambda :: \oplus p; A \vdash_{tr} c_1 : t_1 \qquad \Gamma^G; \Gamma; \Lambda :: \oplus p; A \vdash_{tr} c_2 : t_2}{\Gamma^G; \Gamma; \Lambda; A \vdash_{tr} \textbf{test}(p) \ c_1 \ \textbf{else} \ c_2 : t_1 \triangleright_p t_2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36           |
| 37       | $1 \circ ; 1 ; \Lambda; A \vdash_{tr} test(p) c_1 else c_2 : t_1 \triangleright_p t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37           |
| 38       | By induction on $c_i$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38           |
| 39       | By induction on $e_i$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39           |
| 40       | $\exists C_1, s_1, \theta_1. \Gamma_0^G; \Gamma_0; \Lambda :: \oplus p; A \vdash_{cg} c_1 : s_1 \rightsquigarrow C_1, \theta_0 \cup \theta_1 \vDash C_1, \ dom(\theta_0) \sharp dom(\theta_1) \text{ and } s_1(\theta_0 \cup \theta_1) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $t_1^{40}$   |
| 41       | $\exists C_2, s_2, \theta_2. \Gamma_0^G; \Gamma_0; \Lambda :: \ominus p; A \vdash_{cg} c_2 : s_2 \rightsquigarrow C_2, \theta_0 \cup \theta_2 \vDash C_2, dom(\theta_0) \sharp dom(\theta_2) \text{ and } s_2(\theta_0 \cup \theta_2) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t_{2}^{41}$ |
| 42       | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ | 42           |
| 43       | By Rule (TG-CP), we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43           |
| 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44           |
| 45       | $\Gamma_0^G; \Gamma_0; \Lambda; A \vdash_{cg} \mathbf{test}(p) \ c_1 \ \mathbf{else} \ c_2: s_1 \triangleright_p s_2 \rightsquigarrow C_1 \cup C_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45           |
| 46       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |

2.2

From the construction of  $\theta_1$  and  $\theta_2$  (*i.e.*, the proof of (2) and (3)), the type variables in  $dom(\theta_1)$  and  $dom(\theta_2)$  are collected from the types of functions and local variables, which are fresh. Moreover, if  $\theta_1 \cap \theta_2 \neq \emptyset$ , that is, they share some functions, then  $\theta_1(\alpha_x) = \theta_2(\alpha_x)$  for all  $\alpha_x \in dom(\theta_1) \cap$  $dom(\theta_2)$ . So we can safely get  $(\theta_0 \cup \theta_1 \cup \theta_2) \vDash C_i$  and  $s_i(\theta_0 \cup \theta_1 \cup \theta_2) = t_i$ ,  $\Gamma_0(\theta_0 \cup \theta_1 \cup \theta_2) = \Gamma$ , and  $\Gamma_0^G(\theta_0 \cup \theta_1 \cup \theta_2) = \Gamma^G$ . Therefore,  $(\theta_0 \cup \theta_1 \cup \theta_2) \models C_1 \cup C_2$  and  $(s_1 \triangleright_p s_2)(\theta_0 \cup \theta_1 \cup \theta_2) = t_1 \triangleright_p t_2$ . others By induction. The proof of (c):  $\frac{\Gamma^{G}; [\overline{x}:\overline{t_{p}},r:t_{r}]; \epsilon; B \vdash_{tr} c:s \quad t_{b} \leq s}{\Gamma^{G} \vdash_{tr} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{t_{p}} \xrightarrow{t_{b}} t_{r}}$ Let  $\Gamma_0 = \{\overline{x} \mapsto \overline{\alpha}, r \mapsto \beta\}, \Gamma_0^G = \{x \mapsto \alpha_x \mid x \in dom(\Gamma^G)\}$  and  $\theta_0 = \{\overline{\alpha} \mapsto \overline{t_p}, \beta \mapsto t_r, \gamma \mapsto t_b\} \cup \{\alpha_x \mapsto \Gamma^G(x) \mid x \in dom(\Gamma^G)\}$ , where  $\overline{\alpha}, \beta, \gamma, \alpha_x$  are fresh. By (2) on *c*, we have  $\exists t, C_f, \theta, \Gamma_0^G; \Gamma_0; \epsilon; B \vdash_{cg} c: t \rightsquigarrow C_f, \ (\theta_0 \cup \theta) \vDash C_f, dom(\theta_0) \ \sharp \ dom(\theta) \text{ and } t(\theta_0 \cup \theta) = s.$ By Rule (TG-FUN), we have  $\Gamma_0^G \vdash_{cg} B.f(\overline{x}) \{ \text{init } r = 0 \text{ in } \{c; \text{return } r\} \} : \overline{\alpha} \xrightarrow{\gamma} \beta \rightsquigarrow C_f$ Finally, it is clear that  $(\overline{\alpha} \xrightarrow{\gamma} \beta)(\theta_0 \cup \theta) = \overline{t_p} \xrightarrow{t_b} t_r$ .  $\Box$ Proof for Lemma 3.12: **Proof.** By case analysis. CD-CUP, CD-CAP Trivial. CD-LAPP, CD-RAPP By definition of projection. **CD-SVAR, CD-SUB**<sub>0</sub>, **CD-SUB**<sub>1</sub> Trivial. **CD-MERGE**<sub>0</sub>, **CD-MERGE**<sub>1</sub> By Lemma 3.7. **CS-LU** It is clear that  $C \cup C' \models C$ . For the other direction, we only need to prove  $\{((\Lambda_l, t_l) \leq$  $(\Lambda_1, \alpha)), ((\Lambda_2, \alpha) \leqslant (\Lambda_r, t_r))\} \vDash \{((\Lambda_l :: dif(\Lambda_1 :: \Lambda_2, \Lambda_1), t_l) \leqslant (\Lambda_r :: dif(\Lambda_1 :: \Lambda_2, \Lambda_2), t_r))\}$ if  $\Delta(\Lambda_1 :: \Lambda_2)$ . Assume that  $\theta \models \{((\Lambda_l, t_l) \leq (\Lambda_1, \alpha)), ((\Lambda_2, \alpha) \leq (\Lambda_r, t_r))\}$ , that is,  $(t_l\theta) \cdot \Lambda_l \leq \theta(\alpha) \cdot \Lambda_1 \qquad \theta(\alpha) \cdot \Lambda_2 \leq (t_r\theta) \cdot \Lambda_r$ Since  $\Delta(\Lambda_1 :: \Lambda_2)$ , by Lemmas 3.1 and 3.2, we have  $(t_l\theta)\cdot(\Lambda_l::dif(\Lambda_1::\Lambda_2,\Lambda_1)) \leqslant \theta(\alpha)\cdot(\Lambda_1::\Lambda_2) \quad \theta(\alpha)\cdot\Lambda_1::\Lambda_2 \leqslant (t_r\theta)\cdot(\Lambda_r::dif(\Lambda_1::\Lambda_2,\Lambda_2))$ which deduces  $(t_l\theta) \cdot (\Lambda_l :: dif(\Lambda_1 :: \Lambda_2, \Lambda_1)) \leq (t_r\theta) \cdot (\Lambda_r :: dif(\Lambda_1 :: \Lambda_2, \Lambda_2))$ that is,  $\theta \models \{((\Lambda_l :: dif(\Lambda_1 :: \Lambda_2, \Lambda_1), t_l) \leq (\Lambda_r :: dif(\Lambda_1 :: \Lambda_2, \Lambda_2), t_r))\}$ . 

2.0

2.2

Before proving our unification is sound and complete, we show the *toType* is correct. **Lemma B.3** Consider a type variable  $\alpha$  with  $C_{\alpha}^{L} = \{((\Lambda_{i}^{l}, t_{i}^{l}) \leq (\Lambda_{i}, \alpha))\}_{i \in I}$  and  $C_{\alpha}^{U} = \{((\Lambda_{j}, \alpha) \leq (\Lambda_{j}, \alpha))\}_{i \in I}$  $(\Lambda_{i}^{r}, t_{i}^{r}))\}_{j \in J}$ . Let  $t_{\alpha}$  be the type constructed from to Type  $(C_{\alpha}^{L}, C_{\alpha}^{U})$  if  $\alpha$  is local or to Type  $(C_{\alpha}^{L}, C_{\alpha}^{U})$ otherwise.

(a)  $\{\alpha \mapsto t_{\alpha}\} \models C_{\alpha}^{L} \cup C_{\alpha}^{U}$ . (b) If  $\theta \models C^L_{\alpha} \cup C^U_{\alpha}$ , then there exists  $\theta'$  such that  $dom(\theta') \ddagger dom(\theta)$  and  $(\theta \cup \theta')(\alpha) = t_{\alpha}(\theta \cup \theta')$ .

**Proof.** The proof of (a): Let us consider any lower bound  $((\Lambda_i^l, t_i^l) \leq (\Lambda_i, \alpha))$  and any permission set *P*:

$$(t_{\alpha} \cdot \Lambda_{i})(P) = t_{\alpha}(P \cdot \Lambda_{i})$$

$$= \{P \mapsto (\bigsqcup_{(i,P') \in S_{I}^{P}}(t_{i}^{l} \cdot \Lambda_{i}^{l})(P') \sqcup \alpha'(P)) \sqcap \prod_{(j,P') \in S_{J}^{P}}(t_{j}^{r} \cdot \Lambda_{j}^{r})(P') \mid P \subseteq \mathbf{P}\}(P \cdot \Lambda_{i})$$

$$= (\bigsqcup_{(i,P') \in S_{I}^{P \cdot \Lambda_{i}}}(t_{i}^{l} \cdot \Lambda_{i}^{l})(P') \sqcup \alpha'(P \cdot \Lambda_{i})) \sqcap \prod_{(j,P') \in S_{J}^{P \cdot \Lambda_{i}}}(t_{j}^{r} \cdot \Lambda_{j}^{r})(P')$$

$$\geq \bigsqcup_{(i,P') \in S_{I}^{P \cdot \Lambda_{i}}}(t_{i}^{l} \cdot \Lambda_{i}^{l})(P')$$

$$\geq (t_{i}^{l} \cdot \Lambda_{i}^{l})(P) \text{ (as } (i, P) \in S_{I}^{P \cdot \Lambda_{i}})$$

So  $\{\alpha \mapsto t_{\alpha}\} \models C_{\alpha}^{L}$ . Similar to  $\{\alpha \mapsto t_{\alpha}\} \models C_{\alpha}^{U}$ .

The proof of (b): Let  $\theta_0 = \{ \alpha' \mapsto \theta(\alpha) \}$ , where  $\alpha'$  is a fresh variable introduced by *toType*. Clearly, we have  $dom(\theta_0) \sharp dom(\theta)$ . Since  $\theta \models C^L_{\alpha} \cup C^U_{\alpha}$ , we have  $(t_i^l \theta) \cdot \Lambda_i^l \leqslant \theta(\alpha) \cdot \Lambda_i$  and  $\theta(\alpha) \cdot \Lambda_j \leqslant (t_j^r \theta) \cdot \Lambda_j^r$ for all  $i \in I$  and  $j \in J$ . So we have  $((t_i^l \theta) \cdot \Lambda_i^l)(P) \leq (\theta(\alpha) \cdot \Lambda_i)(P)$  and  $(\theta(\alpha) \cdot \Lambda_i)(P) \leq ((t_i^r \theta) \cdot \Lambda_i^r)(P)$ for any permission set P. In other words, for any permission set P, we have  $((t_i^l \theta) \cdot \Lambda_i^l)(P') \leq \theta(\alpha)(P)$  if  $P' \cdot \Lambda_i = P$  and  $\theta(\alpha)(P) \leq ((t_i^r \theta) \cdot \Lambda_i^r)(P')$  if  $P' \cdot \Lambda_i = P$ . Moreover,

$$t_{\alpha}(\theta \cup \theta_{0})(P) = \{P \mapsto (\bigsqcup_{(i,P') \in S_{I}^{P}}(t_{i}^{l} \cdot \Lambda_{i}^{l})(P') \sqcup \alpha'(P)) \sqcap \prod_{(j,P') \in S_{J}^{P}}(t_{j}^{r} \cdot \Lambda_{j}^{r})(P') \mid P \subseteq \mathbf{P}\}(\theta \cup \theta_{0})(P)$$

$$= (\bigsqcup_{(i,P') \in S_{I}^{P}}(t_{i}^{l}(\theta \cup \theta_{0}) \cdot \Lambda_{i}^{l})(P') \sqcup ((\theta \cup \theta_{0})(\alpha'))(P)) \sqcap \prod_{(j,P') \in S_{J}^{P}}(t_{j}^{r}(\theta \cup \theta_{0}) \cdot \Lambda_{j}^{r})(P')$$

$$= (\bigsqcup_{(i,P') \in S_{I}^{P}}(t_{i}^{l}\theta \cdot \Lambda_{i}^{l})(P') \sqcup \theta(\alpha)(P)) \sqcap \prod_{(j,P') \in S_{J}^{P}}(t_{j}^{r}\theta \cdot \Lambda_{j}^{r})(P')$$

$$= \theta(\alpha)(P) \sqcap \prod_{(j,P') \in S_{J}^{P}}(t_{j}^{r}\theta \cdot \Lambda_{j}^{r})(P') \text{ (as } (t_{i}^{l}\theta \cdot \Lambda_{i}^{l})(P') \leq \theta(\alpha)(P) \text{ for } (i,P') \in S_{I}^{P})$$

$$= \theta(\alpha)(P) (as \theta(\alpha)(P) \leq ((t_{j}^{r}\theta) \cdot \Lambda_{j}^{r})(P') \text{ for } (j,P') \in S_{J}^{P})$$

$$= (\theta \cup \theta_{0})(\alpha) \cdot \Lambda$$

Otherwise,  $\alpha$  is global. The proof is similar to the case above and based on the fact that the types for global variables are invariance for all permission sets.  $\Box$ 

Proof for Lemma 3.13:

**Proof.** By induction on |C|.

|C| = 0 Trivial. 

|C| > 0 In this case we have  $C = \{((\Lambda_i^l, t_i^l) \leq (\Lambda_i, \alpha))\}_{i \in I} \cup \{((\Lambda_j, \alpha) \leq (\Lambda_j^r, t_i^r))\}_{j \in J} \cup C'$ , where  $O(\alpha)$  is the greatest. Let  $t_{\alpha}$  be the type constructed from the constraints on  $\alpha$  (denoted as  $C_{\alpha}$ ) and C'' be the constraint set obtained by replacing in C' every occurrence of  $\alpha$  by  $t_{\alpha}$ . Assume assume  $unify(C'') = \theta'$ . Thus  $\theta = \theta' \cup \{\alpha \mapsto t_{\alpha}\}$ . First, by Lemma B.3, we have  $\{\alpha \mapsto t_{\alpha}\} \models C_{\alpha}$ , and thus  $\theta \models C_{\alpha}$ . Next, by induction, we have  $\theta' \models C''$ . Let's consider the constraints  $\{((\Lambda_i^l, s_i^l) \leq$ 

2.2

# $(\Lambda_i,\beta))\}_{i\in I} \cup \{((\Lambda_j,\beta) \leq (\Lambda_j^r,s_j^r))\}_{j\in J} \subseteq C' \text{ of any other variable } \beta. \text{ Then we have } \{((\Lambda_i^l,s_i^l\{\alpha \mapsto t_\alpha\}) \leq (\Lambda_i,\beta))\}_{i\in I} \cup \{((\Lambda_j,\beta) \leq (\Lambda_j^r,s_j^r\{\alpha \mapsto t_\alpha\}))\}_{j\in J} \subseteq C''.$

$$\begin{aligned} \theta(\beta) \cdot \Lambda_i &= \theta'(\beta) \cdot \Lambda_i & (\text{Apply } \theta) \\ &\geqslant ((s_i^l \{ \alpha \mapsto t_\alpha \}) \theta') \cdot \Lambda_i^l & (\theta' \vDash C'') \\ &= (s_i^l (\theta' \cup \{ \alpha \mapsto t_\alpha \})) \cdot \Lambda_i^l \end{aligned}$$

and

$$\begin{aligned} \theta(\beta) \cdot \Lambda_j &= \theta'(\beta) \cdot \Lambda_j & (\text{Apply } \theta) \\ &\leqslant ((s_j^r \{ \alpha \mapsto t_\alpha \}) \theta') \cdot \Lambda_j^r & (\theta' \vDash C'') \\ &= (s_j^r (\theta' \cup \{ \alpha \mapsto t_\alpha \})) \cdot \Lambda_j^r \end{aligned}$$

Therefore, the result follows.

#### Proof for Lemma 3.14:

<sup>18</sup> <sup>19</sup> <sup>20</sup> **Proof.** We prove that the statement  $\theta = \theta' \theta$ , which deduces the result. The statement holds trivially when |C| = 0.

When |C| > 0, we have  $C = \{((\Lambda_i^l, t_i^l) \le (\Lambda_i, \alpha))\}_{i \in I} \cup \{((\Lambda_j, \alpha) \le (\Lambda_j^r, t_j^r))\}_{j \in J} \cup C'$ , where  $O(\alpha)$ is the greatest. Let  $t_{\alpha}$  be the type constructed from the constraints on  $\alpha$  (denoted as  $C_{\alpha}$ ) and  $C_0$  be the constraint set obtained by replacing in C' every occurrence of  $\alpha$  by  $t_{\alpha}$ . Since  $\theta \models C$ , we have  $\theta \models C'$  and  $\theta \models C_{\alpha}$ , and thus  $\theta \models C_0$ . By induction on  $C_0$ , there exists  $\theta'_0$  such that  $unify(C_0) = \theta'_0$  and  $\theta = \theta'_0\theta$ . According to the function unify, we get  $unify(C) = \theta'_0 \cup \{\alpha \mapsto t_{\alpha}\} = \theta'$ . For any  $\beta \notin dom(\theta')$ , clearly  $\beta(\theta'\theta) = \beta\theta$ . Considering  $\alpha$ , since  $\theta \models C_{\alpha}$ , by Lemma B.3, we have  $\alpha\theta = t_{\alpha}\theta$ , and thus  $\alpha\theta = \alpha(\theta'\theta)$ . While for any other variable  $\beta \in dom(\theta')$ , we have  $\beta(\theta'\theta) = \beta((\theta'_0 \cup \{\alpha \mapsto t_{\alpha}\})\theta) = \beta(\theta'_0\theta) = \beta\theta$ .

#### Appendix C. Proofs for Representation

Proof for **Lemma 4.1**:

**Proof.** Straightforward from Definition 4.4.  $\Box$ 

Proof for **Lemma 4.2**:

**Proof.** For the proof of (1), according to Lemma 4.1, we have

$$\mathcal{R}(t\uparrow_p)(P) = t\uparrow_p (P) = t(P\cup\{p\}) = \mathcal{R}(t)(P\cup\{p\}).$$

41 Similar to the proof of (2).  $\Box$ 

Proof for Lemma 4.3:

**Proof.** Similar to Lemma 4.2  $\Box$ 

| Proof for <b>Lemma 4.4</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 1        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|
| <b>Proof.</b> Similar to Lemma 4.2 $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 2<br>3   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 4        |
| Proof for Lemma 4.5:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 6        |
| <b>Proof.</b> Straightforward From Lemma 4.3. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 7        |
| Proof for <b>Lemma 4.6</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 8        |
| 1 1001 101 <b>Lemma 4.0</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 9        |
| <b>Proof.</b> For the proof of $(a)$ , we first prove the statement: for any type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e presentation r, any permission        | 10       |
| p, and any permission set P, PROMOTION-RECURSE $(r, p)(P) = r(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | 11       |
| induction on <i>r</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 12<br>13 |
| <i>r</i> is sink In this case, PROMOTION-RECURSE $(r, p) = r$ and $r(P) = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(P \cup \{p\}) = r.val.$ So the result | 13       |
| holds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 15       |
| r.v = <b>INDEX</b> $(p)$ In this case, PROMOTION-RECURSE $(r, p) = (r.v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r.h, r.h) and $r.h.v > INDEX(p)$ .      | 16       |
| Then no matter $p \in P$ or not, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 17       |
| <b>PROMOTION-RECURSE</b> $(r, p)(P) = r.h(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 18       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | not affect the output)                  | 19       |
| $= r(P \cup \{p\})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 20       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 21       |
| r.v > INDEX(p) In this case, PROMOTION-RECURSE $(r, p) = r$ and $p$ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | loes not affect the output. There-      | 22       |
| fore, $PROMOTION(r, p)(P) = r(P) = r(P \cup \{p\}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 23       |
| r.v < INDEX(p) In this case, PROMOTION-RECURSE $(r, p) = (r.v, l, h)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | where $l = PROMOTION-RECURSE(l)$        |          |
| and $h = \text{PROMOTION-RECURSE}(r.h, p)$ . Assume $P[r.v] = 0$ , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n we have                               | 25<br>26 |
| <b>PROMOTION-RECURSE</b> $(r, p)(P)$ = <b>PROMOTION-RECURS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E(r,l, p)(P)  (P[r,v] = 0)              | 20       |
| $= r.l(P \cup \{p\}) $ (by independent of the second se |                                         | 28       |
| $= r(P \cup \{p\})  ((P \cup \{p\}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [r.v] = 0)'                             | 29       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 30       |
| Similar for $P[r.v] = 1$ , the result holds as well.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 31       |
| From existing work on BDD [20, 21], we can get the procedure REDUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CE() is correct. Considering any        | 32       |
| permission set P, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 33       |
| PROMOTION( $\mathcal{R}(t), p$ )( $P$ ) = REDUCE(PROMOTION-REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | URSE $(\mathcal{R}(t)   p))(P)$         | 34       |
| $= \text{PROMOTION-RECURSE}(\mathcal{R}(t))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 35       |
| $= \mathcal{R}(t)(P \cup \{p\})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /, F) (- )                              | 36       |
| $= \mathcal{R}(t \uparrow_p)$ (Lemma 4.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 37       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 38<br>39 |
| Similar to the proof of $(b)$ . $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | 40       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 40       |
| Proof for <b>Lemma 4.7</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 42       |
| <b>Proof.</b> we first prove the statement: given two type presentations $r_1, r_2$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a permission <i>n</i> and a permission  | 43       |
| set P, if $p \in P$ , then MERGE-RECURSE $(r_1, r_2, p)(P) = r_1(P)$ . The pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 44       |
| set $r_1$ , if $p \in r_1$ , then where $e^{-r_1}(r_1, r_2, p)(r_1) = r_1(r_1)$ . The pr and $r_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sor proceeds by induction on 71         | 45       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 46       |

| 1        | $r_1, r_2$ are sink In this case, MERGE-RECURSE $(r_1, r_2, p) = (p, r_2, r_1)$ . As $p \in P$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | $(p, r_2, r_1)(P) = r_1(P)$ . So the result holds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3        | $r_1$ is sink or $r_1 \cdot v > r_2 \cdot v$ There are three subcases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4        | Subcase (1) where $r_2.v > INDEX(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (p, r_2, r_1)$ . Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5        | to the first case.<br>Subsect (2) where $n = 1$ , $N = N = N = 0$ , $N = 0$ , $N = 0$ , $n = 1$ , $n$ |
| 6        | Subcase (2) where $r_{2}.v = \text{INDEX}(p)$ : we have $\text{MERGE-RECURSE}(r_1, r_2, p) = (r_2.v, r_2.l, r_1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7        | Similar to the first case.<br>Subsect (2) where $n = 1$ (1) $\mathbb{E}[V(n)]$ we have $M = \mathbb{E}[V(n) = \mathbb{E}[V(n)] = (n = 1, k)$ where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8        | Subcase (3) where $r_2.v < \text{INDEX}(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (r_2.v, l, h)$ , where $l = \text{MERGE-RECURSE}(r_1, r_2, p) = (r_2.v, l, h)$ , where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9<br>10  | $l = MERGE-RECURSE(r_1, r_2, l, p)$ and $h = MERGE-RECURSE(r_1, r_2, h, p)$ . By induction on $r_1$ and $r_2, h$ , we have $h(P) = r_1(P)$ . Therefore, $(r_2, v, l, h)(P) = h(P) = r_1(P)$ . So the result holds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11       | $r_2$ is sink or $r_1 v < r_2 v$ There are three subcases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12       | Subcase (1) where $r_1 v > INDEX(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (p, r_2, r_1)$ . Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 13       | to the first case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14<br>15 | Subcase (2) where $r_1.v = \text{INDEX}(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (r_1.v, r_2, r_1.h)$ . As $p \in P$ , namely, $P[r_1.v] = 1$ , we have $(r_1.v, r_2, r_1.h)(P) = r_1.h(P) = r_1(P)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16       | Subcase (3) where $r_1.v < \text{INDEX}(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (r_1.v, l, h)$ , where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17       | $l = MERGE-RECURSE(r_1, l, r_2, p)$ and $h = MERGE-RECURSE(r_1, h, r_2, p)$ . By induction on $r_1.h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18       | and $r_2$ , we have $h(P) = r_1 \cdot h(P)$ . Moreover, as $p \in P$ , that is, $P[r_1 \cdot v] = 1$ , we have $(r_1 \cdot v, l, h)(P) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19       | $h(P) = r_1 \cdot h(P) = r_1(P)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20       | $r_1 \cdot v = r_2 \cdot v$ There are three subcases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 21       | Subcase (1) where $r_1 v > INDEX(p)$ : we have MERGE-RECURSE $(r_1, r_2, p) = (p, r_2, r_1)$ . Similar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22       | to the first case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23       | Subcase (2) where $r_{1}.v = \text{INDEX}(p)$ : we have $\text{MERGE-RECURSE}(r_{1}, r_{2}, p) = (r_{1}.v, r_{2}.l, r_{1}.h)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24       | Similar to Subcase $(2)$ of the third case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25       | Subcase (3) where $r_{1}.v < \text{INDEX}(p)$ : we have $\text{MERGE-RECURSE}(r_{1}, r_{2}, p) = (r_{1}.v, l, h)$ , where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26       | $l = MERGE-RECURSE(r_1.l, r_2.l, p)$ and $h = MERGE-RECURSE(r_1.h, r_2.h, p)$ . Similar to Subcase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 27       | (3) of the third case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 29       | From existing work on BDD [20, 21], we can get the procedure REDUCE() is correct. Considering any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30       | permission set P such that $p \in P$ , we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 32       | $MERGE(\mathcal{R}(t_1), \mathcal{R}(t_2), p)(P) = REDUCE(MERGE-RECURSE(\mathcal{R}(t_1), \mathcal{R}(t_2), p))(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33       | $= \operatorname{MERGE-RECURSE}(\mathcal{R}(t_1), \mathcal{R}(t_2), p)(P)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 34       | $= \mathcal{R}(t_1)(P) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35       | $= \mathcal{R}(t_1 \triangleright_p t_2)(P)  (Lemma \ 4.4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 36       | Liberties are set $M_{\rm ED,GE}(\mathcal{D}(t), \mathcal{D}(t), z)(\mathcal{D}) = \mathcal{D}(t, z, t)(\mathcal{D})$ if $z, t, \mathcal{D}$ . Therefore the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 37       | Likewise, we can get $MERGE(\mathcal{R}(t_1), \mathcal{R}(t_2), p)(P) = \mathcal{R}(t_1 \triangleright_p t_2)(P)$ if $p \notin P$ . Therefore, the result follows. $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 38       | Ioliows.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 39       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 40       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 41       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 42<br>43 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 43<br>44 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44<br>45 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 45       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |