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Abstract. We introduce a novel type system for enforcing secure information flow in an imperative language. Our work is
motivated by the problem of statically checking potential information leakage in Android applications. To this end, we design
a lightweight type system featuring Android permission model, where the permissions are statically assigned to applications
and are used to enforce access control in the applications. We take inspiration from a type system by Banerjee and Naumann to
allow security types to be dependent on the permissions of the applications. A novel feature of our type system is a typing rule
for conditional branching induced by permission testing, which introduces a merging operator on security types, allowing more
precise security policies to be enforced. The soundness of our type system is proved with respect to non-interference. A type
inference algorithm is also presented for the underlying security type system, by reducing the inference problem to a constraint
solving problem in the lattice of security types. In addition, a new way to represent our security types as reduced ordered binary
decision diagrams is proposed.
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1. Background and Introduction

Mobile security has become increasingly important for our daily life due to the pervasive use of mobile
applications. Among the mobile devices that are currently in the market, Android devices account for
the majority of them so analyses of their security have been of significant interest. There has been a large
number of analyses on Android security ([1–5]) focusing on detecting potential security violations. Here
we are interested instead in the problem of constructing secure applications, in particular, in providing
guarantees of information flow security in the constructed applications.

We follow the language-based security approach whereby information flow security is enforced
through type systems [6–9]. In particular, we propose a design of a type system that guarantees a non-
interference property [8], i.e., typable programs are non-interferent. As shown in [10], non-interference
provides a general and natural way to model information flow security. The type-based approach to non-
interference requires assigning security labels to program variables and security policies to functions
or procedures. Such policies are typically encoded as types, and typeability of a program implies that
the runtime behavior of the program complies with the stated policies. Security labels form a lattice
structure with an underlying partial order 6, e.g., a lattice with two elements “high” (H) and “low” (L)
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where L 6 H. Typing rules can then be designed to prevent both explicit and implicit flow (through
conditionals, e.g., if-then-else statements) from H to L. To prevent an explicit flow, the typing rule for an
assignment statement such as x := e would require that l(e) 6 l(x) where l(.) denotes the security level
of an expression. To prevent an implicit flow, e.g., if (y = 0) then x:= 0 else x := 1, most type systems
for non-interference require that the assignments in both branches are given the same security level that
is higher or at least equal to the security level of the condition (y=0). For example, if y is of type H and
x is of type L, the statement would not be typable.

1.1. Motivating Examples

In designing an information flow type system for Android, we encounter a common pattern of con-
ditionals that would not be typable using conventional type systems. Consider the pseudo-code in List-
ing 1. Such a code fragment could be part of a phone dialer or a social network service app such as
Facebook and WhatsApp, where getContactNo provides a public interface to query the phone number
associated with a name. The (implicit) security policy in this context is that contact information (the
phone number) can only be released if the calling app has the permission READ_CONTACT. The latter
is enforced using the checkPermission API in Android. Suppose phone numbers are labelled with H, and
the empty string is labelled with L. If the interface is invoked by an app that has the required permission,
the phone number (H) is returned; otherwise an empty string (L) is returned. In both cases, no data leak-
age happens: in the former case, the calling app is authorized; and in the latter case, no sensitive data is
ever returned. By this informal reasoning, the function complies with the implicit security policy and it
should be safe to be called in any context, regardless of the permissions the calling app has. However,
in the traditional (non-value dependent) typing rule for the if-then-else construct, one would assign the
same security level to both branches, and the return value of the function would be assigned level H.
As a result, if this function is called from an app with no permission, assigning the return value to a
variable with security level L has to be rejected by the type system even though no sensitive information
is leaked. To cater for such a scenario, we need to make the security type of getContactNo depend on
the permissions possessed by the caller.

Banerjee and Naumann [11] proposed a type system (which we shall refer to as BN system) that
incorporates permissions into function types. Their type system was designed for an access control
mechanism different from ours, but the basic principles are still applicable. In BN system, a Java class
may be assigned a set of permissions which need to be explicitly enabled via an enable command for
them to have any effect. We say a permission is disabled for a class if it is not assigned to the class,
or it is assigned to the class but is not explicitly enabled. Depending on the permissions of the calling
class (corresponding to an app in the above example), a function such as getContactNo can have a
collection of types. In BN system, the types of a function take the form (l1, . . . , ln)

P−→ l where l1, . . . , ln
denote security levels of the input, l denotes the security level of the output and P denotes a set of
permissions that are disabled by the caller. The idea is that permissions are guards to sensitive values.
Thus conservatively, one would type the return value of getContactNo as L only if one knows that the
permission READ_CONTACT is disabled. In BN system, getContactNo admits the following types:

getContactNo : L P−→ L getContactNo : L ∅−→ H

where P = {READ_CONTACT}. When typing a call to getContactNo by an app without permissions,
the first type of getContactNo is used; otherwise the second type is used.
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S t r i n g g e t C o n t a c t N o ( S t r i n g name ) {
S t r i n g number ;
i f ( c h e c k P e r m i s s i o n (READ_CONTACT) )

number = . . . ; // query the phone number
e l s e number = " " ;
re turn number ;

}

Listing 1 Getting contact info with a permission check.

S t r i n g g e t I n f o ( ) {
S t r i n g r = " " ;
t e s t ( p ) {

t e s t ( q ) r = l o c ; e l s e r = " " ;
} e l s e {

t e s t ( q ) r = a i d ++ l o c ; e l s e r = " " ;
}
re turn r ;

}

Listing 2 An example with a non-monotonic policy.

In BN system, each class is assigned a set of permissions, but before these permissions can be exer-
cised, they must be explicitly enabled with an enable command. Initially all permissions are disabled by
default. The typing judgment in BN system keeps track of the set of permissions (denoted by Q in the
rules below) that are disabled at a particular point in the program. The language of BN system also fea-
tures a command “test(P) c1 else c2”, which means that if the permissions in the set P are all enabled,
then the command behaves like c1; otherwise it behaves like c2. The typing rules for the test command
(in a much simplified form) are:

(R1)
Q ∩ P = ∅ Q ` c1 : τ Q ` c2 : τ

Q ` test(P) c1 else c2 : τ
(R2)

Q ∩ P 6= ∅ Q ` c2 : τ

Q ` test(P) c1 else c2 : τ

where Q is a set of permissions that are disabled. When Q ∩ P 6= ∅, then at least one of the permissions
in P is disabled, thus one can determine statically that “test(P)” would fail and only the else branch
would be executed at runtime. This case is reflected in the typing rule R2. When Q ∩ P = ∅, there can
be two possible runtime scenarios. One scenario is that all permissions in P are enabled, so “test(P)”
succeeds and c1 is executed. The other is that some permissions in P are disabled, but are not accounted
for in Q. This could happen in BN system due to the way permissions are propagated and/or inherited
across different classes, so it could happen that the context in which the program being typed occurs
is not authorized to access some permissions in P. As noted in [11], in this case, one cannot determine
statically, from the information available in the typing judgment, whether the test ‘test(P)’ succeeds, so
the typing rule R1 conservatively considers typing both branches.

In adapting BN system to Android, we can make some simplifications: permissions of an app are
always enabled, and they are static.1 So in this case, we can assume that Q = ∅, and only the rule R1
is relevant here. However, even with these simplifications, it is still not possible to determine statically
whether ‘test(P)’ would succeed or not, in the context where the program being typed is part of a service
that may be called by arbitrary apps, so their permissions cannot be determined statically. So it seems
that a straightforward adaptation of BN system to Android would still keep the form of R1. However,
R1 is still too strong in some scenarios, where the desired security policy requires the absence of some
permissions for the release of sensitive information. We call such a policy a non-monotonic policy, in
the sense that, viewing a policy as a function from permission sets to security labels, the possession of
more permissions does not equal the ability to acquire more sensitive information.

1Some permissions in Android 6 and above require user approval at runtime, but for the purpose of typing the ‘test’ command,
we make the assumption that these permissions are enabled as well.
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For an example of an application for which a non-monotonic policy is desirable, consider for example
an application that provides the location information related to a certain advertising ID (in Listing 2),
where the latter provides a unique ID for the purpose of anonymizing mobile users to be used for per-
sonalized advertising (instead of relying on hardware device IDs such as IMEI numbers). If one can
correlate an advertising ID with a unique hardware ID, it will defeat the purpose of the anonymizing
service provided by the advertising ID. To prevent that, getInfo returns the location information for an
advertising ID only if the caller does not have access to the device ID. That is, if the caller of getInfo
possess the permission to access the device ID, then the caller should not be able to obtain any informa-
tion that contains the location information; so this policy is non-monotonic: a caller with no permissions
is allowed to access the sensitive information (location), whereas another caller with more permission is
not allowed to access that information.

To simplify the discussion, let us assume that the permissions to access the IMEI number and the
location information are denoted by p and q, respectively; and aid denotes a unique advertising ID
generated and stored by the app for the purpose of anonymizing user tracking and loc denotes the location
information. The function getInfo first tests whether the caller has access to the IMEI number. If it does,
and if it has access to the location information, then only the location information is returned. If the
caller has no access to the IMEI number, but can access the location information, then the combination
of the advertising id and the location information aid++loc is returned. In all other cases, the empty
string is returned. Let us consider a lattice with four elements ordered as: L 6 l1, l2 6 H, where l1
and l2 are incomparable. We specify that empty string is of type L, loc is of type l1, aid is of type l2,
and the aggregate aid++loc is of type H. Consider the case where the caller has permissions p and q
and both are (explicitly) enabled. When applying BN system, the desired type of getInfo in this case is

()
∅−→ l1. This means that the type of r has to be at most l1. Since no permissions are disabled, only R1

is applicable to type this program. This, however, will force both branches of test(p) to have the same
type. As a result, r has to be typed as H so that all four assignments in the program can be typed.

The issue with the example in Listing 2 is due to the inability to determine statically whether ‘test(P)’
succeeds, leading to a conservative choice in the rule R1 of assigning the same types to both branches
of the test. As a result, BN system cannot precisely capture the non-monotonic security policy in our
example above: when the caller has permissions p and q, the desired type of getInfo should be l1, which
is not necessary larger than the types when the caller has neither p nor q (e.g. the type for the enabled set
{q} is H). The choice of R1 taken in [11] appears to be a design decision: they cited in [11] the lack of
motivating examples for non-monotonic policies, and suggested that to accommodate such policies one
might need to consider a notion of declassification. As we have seen, however, non-monotonic policies
can arise naturally in mobile applications. In a study on Android malwares [1], Enck et al. identify several
combinations of permissions that are potentially ‘dangerous’, in the sense that they allow potentially
unsafe information flow. An information flow policy that requires the absence of such combinations
of permissions in information release would obviously be non-monotonic. In general, non-monotonic
policies can be required to solve the aggregation problem studied in information flow theory [12], where
several pieces of low security level information may be pooled together to learn information at a higher
security level.

We therefore designed a more precise type system for information flow under an access control model
inspired by the Android framework. Our type system solves the problem of typing non-monotonic poli-
cies without resorting to downgrading or declassifying information. The technique we use is to keep
information related to both branches of test via a merging operator on security types. Additionally, there
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is a significant difference between the permission model of Android and that of BN system, where per-
missions are propagated across method invocations among apps. In Android, permissions are relevant
only during inter-process or inter-component calls and are not inherited along the call chains across
apps. As we shall see in Section 2.5, this may give rise to a type of attack which we call “parameter
laundering” attack if one adopts a naive typing rule for function calls. The soundness proof for our type
system is significantly different from that for BN system due to the difference in permission model and
the new merging operator on types in our type system.

The contributions of our work are four-fold.

(1) We develop a lightweight type system in which security types are dependent on a permission-based
access control mechanism, and prove its soundness with respect to a notion of non-interference
(Section 2). A novel feature of the type system is the type merging constructor, used for typing the
conditional branch in permission checking, which allows us to model non-monotonic information
flow policies.

(2) We identify a problem of explicit flow through function calls in the setting where permissions are
not propagated during function calls. This problem arises as a byproduct of Android’s permission
model, which is significantly different from that of JVM, and adopting a standard typing rule for
function calls such as the one proposed for Java in [11] would lead to unsoundness. We call this
problem the parameter laundering problem and we propose a typing rule for function calls that
prevents it.

(3) We show that the type inference is decidable for our type system, by reducing it to a constraint
solving problem (Section 3).

(4) We give a new way to represent our security types as reduced ordered binary decision diagrams,
which generalizes boolean functions to functions mapping boolean formula to a multi-value set.
We believe the representation will be efficient in practice.

This paper is an extension of [13]. It first extends the security type system with global variables and
proves that it is still sound with respect to non-interference 2 (Section 2). It further revises type inference
for global variables and contains the main lemmas for its decidability (Section 3). Finally, it also presents
a representation for our types (Section 4).

The rest of the paper is organized as follows. Section 2 presents our security type system and its
properties. Section 3 and Section 4 give the type inference for our security type system and the repre-
sentation for our types, respectively. Section 5 presents related work. And Section 6 concludes the paper
and discusses some future work.

2. A Secure Information Flow Type System

In this section, we present the proposed information flow type system. Section 2.1 informally discusses
a permission-based access control model, which is an abstraction of the permission mechanism used in
Android. Section 2.2 and Section 2.3 give the operational semantics of a simple imperative language
that includes permission checking constructs based on the abstract permission model. Section 2.4 and
Section 2.5 describe the type system for our language and prove its soundness with respect to a notion
of non-interference.

2Due to space constraints, only the main proofs are presented here, and the other proofs, including the proofs for type
inference and representation, can be found in the appendix.
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2.1. A model of permission-based access control

Instead of taking all the language features and the library dependencies of Android apps into account,
we focus on the permission model used in inter-component communications within and across apps.
Such permissions are used to regulate access to protected resources, such as device id, location informa-
tion, contact information, etc.

In Android, an app specifies the permissions it needs at the installation time via a manifest file. In
recent versions of Android (since Android 6.0, API level 23), some of these permissions need to be
granted by users at runtime. But at no point a permission request is allowed if it is not already specified in
the manifest. For now, we assume a permission enforcement mechanism that applies to Android versions
prior to version 6.0 3, so it does not account for permission granting at runtime. Runtime permission
granting [14] poses some problems in typing non-monotonic policies; we shall come back to this point
later in Section 6.

An Android app may provide services to other apps, or other components within the app itself. Such a
service provider may impose permissions on other apps who want to access its services. Communication
between apps is implemented through Binder IPC (inter-process communications) [15].

In our model, a program can be seen as a highly abstracted version of an app, and the intention is
to show how one can reason about information flows in such a service provider when access control
is imposed on the calling app. In the following we shall not model explicitly the IPC mechanism of
Android, but will instead model it as a function call. Note that this abstraction is practical since it can
be achieved by conventional data and control flow analyses, together with the modeling of Android IPC
specific APIs. The feasibility has been demonstrated by frameworks like FlowDroid [3], Amandroid [4],
IccTA[5], etc.4

One significant issue that has to be taken into account is that the Android framework does not track
IPC call chains between apps and permissions of an app are not propagated to the callee. That is, an app A
calling another app B does not grant B the permissions assigned to A. This is different from the traditional
type systems such as BN where permissions can potentially propagate along the call stacks. Note however
that B can potentially have more permissions than A, leading to a potential privilege escalation, a known
weakness in Android permission system [16]. Another consequence of lacking transitivity is that in
designing the type system, one must be careful to avoid what we call a “parameter laundering" attack
(see Section 2.4).

2.2. A Language with Permission Checks

As mentioned earlier, we do not model directly all the language features of an Android app, but use a
much simplified language to focus on the permission mechanism part. The language is a variant of the
language considered in [8], extended with functions and an operator for permission checks.

We model an app as a collection of functions (services), together with a statically assigned permission
set. A system, denoted by S, consists of a set of apps. We use capital letters A, B, . . . to denote apps. A
function f defined in an app A is denoted by A. f , and may be called independently of other functions in

3To be specific, runtime permission request requires the compatible version specified in the manifest file to be greater than
or equal to API level 23, and running OS should be at least Android 6.0.

4We have also been implementing a permission-dependent information flow analysis tool on top of Amandroid. The basic
idea is similar to the one mentioned in this paper, however the focus is improving the precision of information leakage detection
rather than non-interference certification.
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the same app. The intention is that a function models an application component (i.e., Activity, Service,
BroadCastReceiver, and ContentProvider) in Android, which may be called from within the same app
or other apps.

We assume that only one function is executed at a time, so we do not model concurrent executions of
apps. We think that in the Android setting, considering sequential behavior only is not overly restrictive.
This is because the communication between apps are (mostly) done via IPC. Shared states between apps,
which is what contributes to the difficulty in concurrency handling, is mostly absent, apart from the very
limited sharing of preferences. In such a setting, each invocation of a service can be treated independently
as there is usually no synchronization needed between different invocations. Additionally, we assume
functions in a system are not (mutually) recursive, so there is a finite chain of function calls from any
given function. The absence of recursion is not a restriction, since our functions are supposed to model
communications in Android, which are rarely recursive. We denote with P the finite set containing all
permissions in the system. Each app is assigned a static set of permissions drawn from this set. The
powerset of P is written asP.

For simplicity, we consider only programs manipulating integers, so the expressions in our language
all have the integer type. Boolean values are encoded as 0 (false) and any non-zero values (true). The
grammar for expressions is given below:

e ::= n | x | e op e

where n denotes an integer literal, x denotes a variable, and op denotes a binary operation. The com-
mands of the language are given in the following grammar:

c ::= x := e | if e then c else c | while e do c | c; c
| letvar x = e in c | x := call A. f (e) | test(p) c else c

The first four constructs are respectively assignment, conditional, while-loop and sequential composi-
tion. The statement “letvar x = e in c” is a local variable declaration statement. Here x is declared and
initialized to e, and its scope is the command c. We require that x does not occur in e. The statement
“x := call A. f (e)” denotes an assignment whose right hand side is a function call to A. f . The statement
“test(p) c1 else c2” checks whether the calling app has permission p: if it does then c1 is executed, oth-
erwise c2 is executed. This is similar to the test construct in BN system, except that we allow testing
only one permission at a time. This is a not real restriction since both versions of the test can simulate
one another. The set of free variables occurring in an expression e or a command c is defined as follows:

fv(n) = ∅ fv(if e then c1 else c2) = fv(e) ∪ fv(c1) ∪ fv(c2)
fv(x) = {x} fv(while e do c) = fv(e) ∪ fv(c)

fv(e1 op e2) = fv(e1) ∪ fv(e2) fv(letvar x = e in c) = (fv(e) ∪ fv(c)) \ {x}
fv(x := e) = {x} ∪ fv(e) fv(x := call A. f (e)) = {x} ∪

⋃
ei∈e fv(ei)

fv(c1; c2) = fv(c1) ∪ fv(c2) fv(test(p) c1 else c2) = fv(c1) ∪ fv(c2)

A function declaration has the following syntax:

F ::= A. f (x)
{

init r = 0 in {c; return r}
}
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where A. f is the name of the function, x̄ are function parameters, c is a command and r is a local variable
that holds the return value of the function. The variables x and r are bound variables with the command
“c; return r” in their scopes. The set of free variables occurring a function f is defined as follows:

fv(A. f (x)
{

init r = 0 in {c; return r}
}

) = fv(c) \ ({xi|xi ∈ x} ∪ {r})

Given a system S, we call the free variables occurring in S as global variables, i.e., the variables that
are neither introduced by letvar nor from the variable set {x, r} of any function in S. Global variables
can be used to model the shared preference between apps. Formally, the global variables of S is defined
as follows:

gv(S) =
⋃
A∈S

fv(A) =
⋃
A∈S

⋃
A. f∈A

fv(A. f )

The others, i.e., the variables that are either introduced by letvar or from the variable set x, r of any func-
tion in S, are called local variables. To simplify presentation, we assume that (1) variables in a system are
named differently so there are no naming clashes between them; and (2) the variable x in x := call A. f (e)
is not a global one, since we can encode xg := call A. f (e) as letvar xl = 0 in xl := call A. f (e); xg := xl,
where xg is a global variable and xl is a fresh local variable.

2.3. Operational Semantics

Given a system S, we assume that the permission sets assigned to the apps in S are given by a table Θ
indexed by app names, and function definitions in S are stored in a table FD indexed by function names.

An evaluation environment is a finite mapping from variables to values (i.e., integers). We denote with
EEnv the set of evaluation environments. Elements of EEnv are ranged over by η. We use the notation
[x1 7→ v1, · · · , xn 7→ vn] to denote an evaluation environment mapping variable xi to value vi; this will
sometimes be abbreviated as [x 7→ v]. The domain of η = [x1 7→ v1, · · · , xn 7→ vn] (i.e., {x1, . . . , xn}) is
denoted by dom(η). Given two environments η1 and η2, we define η1η2 as an environment η such that
η(x) = η2(x) if x ∈ dom(η2), otherwise η(x) = η1(x). For example, η[x 7→ v] maps x to v, and y to η(y)
for any y ∈ dom(η) such that y 6= x. Given a mapping η and a variable x, we write η− x to denote the
mapping resulting from removing x from dom(η). To simplify proofs of various properties, we split the
evaluation environment into two parts (ηG, η): one (i.e., ηG) for the global variables and the other (i.e.,
η) for the non-global ones, and require that dom(ηG) = gv(S).

The operational semantics for expressions and commands is given in Fig. 1. The evaluation judgment
for expressions has the form (ηG, η) ` e  v, which states that expression e evaluates to value v when
variables in e are interpreted in the evaluation environment (ηG, η). We write (ηG, η) ` e  v, where
e = e1, . . . , en and v = v1, . . . , vn for some n, to denote a sequence of judgments (ηG, η) ` e1  
v1, . . . , (η

G, η) ` en  vn.
The evaluation judgment for commands takes the form (ηG, η); A; P ` c  (ηG

1 , η1), where (ηG, η)
is an evaluation environment before the execution of the command c, and (ηG

1 , η1) is the evaluation
environment after the execution of c. Here A refers to the app to which the command c belongs. The
permission set P denotes the permission context, i.e., it is the set of permissions of the app which invokes
the function of A in which the command c resides. The caller app may be A itself (in which case the
permission context will be the same as the permission set of A) but more often it is another app in the
system.
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E-VAL
(ηG, η) ` v v

E-OP
(ηG, η) ` e1  v1 (ηG, η) ` e2  v2

(ηG, η) ` e1 op e2  v1 op v2

E-VAR-L
x ∈ dom(η)

(ηG, η) ` x η(x)

E-VAR-G
x ∈ dom(ηG)

(ηG, η) ` x ηG(x)
E-LETVAR

(ηG, η) ` e v (ηG, η[x 7→ v]); A; P ` c (ηG
1 , η1)

(ηG, η); A; P ` letvar x = e in c (ηG
1 , η1 − x)

E-ASS-L
(ηG, η) ` e v x ∈ dom(η)

(ηG, η); A; P ` x := e (ηG, η[x 7→ v])
E-ASS-G

(ηG, η) ` e v x ∈ dom(ηG)

(ηG, η); A; P ` x := e (ηG[x 7→ v], η)

E-IF-T

(ηG, η) ` e v v 6= 0
(ηG, η); A; P ` c1  (ηG

1 , η1)

(ηG, η); A; P ` if e then c1 else c2  (ηG
1 , η1)

E-IF-F

(ηG, η) ` e v v = 0
(ηG, η); A; P ` c2  (ηG

1 , η1)

(ηG, η); A; P ` if e then c1 else c2  (ηG
1 , η1)

E-WHILE-T
(ηG, η) ` e v v 6= 0 (ηG, η); A; P ` c (ηG

1 , η1) (ηG
1 , η1); A; P ` while e do c (ηG

2 , η2)

(ηG, η); A; P ` while e do c (ηG
2 , η2)

E-WHILE-F
(ηG, η) ` e v v = 0

(ηG, η); A; P ` while e do c (ηG, η)
E-SEQ

(ηG, η); A; P ` c1  (ηG
1 , η1)

(ηG
1 , η1); A; P ` c2  (ηG

2 , η2)

(ηG, η); A; P ` c1; c2  (ηG
2 , η2)

E-CP-T
p ∈ P (ηG, η); A; P ` c1  (ηG

1 , η1)

(ηG, η); A; P ` test(p) c1 else c2  (ηG
1 , η1)

E-CP-F
p /∈ P (ηG, η); A; P ` c2  (ηG

1 , η1)

(ηG, η); A; P ` test(p) c1 else c2  (ηG
1 , η1)

E-CALL

FD(B. f ) = B. f (y)
{

init r = 0 in {c; return r}
}

(ηG, η) ` e v (ηG, [y 7→ v, r 7→ 0]); B; Θ(A) ` c (ηG
1 , η1)

(ηG, η); A; P ` x := call B. f (e) (ηG
1 , η[x 7→ η1(r)])

Fig. 1. Evaluation rules for expressions and commands, given a function definition table FD and a permission assignment Θ.

The operational semantics of most commands are straightforward. We explain the semantics of the test
primitive and the function call. Rules (E-CP-T) and (E-CP-F) capture the semantics of the test primitive.
These are where the permission context P in the evaluation judgement is used. The semantics of function
calls is given by (E-CALL). Notice that c inside the body of callee is executed under the permission
context Θ(A), which is the permission set of A. The permission context P in the conclusion of that rule,
which denotes the permission of the app that calls A, is not used in the premise. That is, the permission
context of A is not inherited by the callee function B. f . This reflects the way permission contexts in
Android are passed on during IPCs [15, 17], and is also a major difference between our permission
model and that in BN system, where permission contexts are inherited by successive function calls.

2.4. Security Types

In information flow type systems such as [8], it is common to adopt a lattice structure to encode
security levels. Security types in this setting are just security levels. In our case, we generalize the
security types to account for the dependency of security levels on permissions. So we shall distinguish
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security levels, given by a lattice structure which encodes sensitivity levels of information, and security
types, which are mappings from permissions to security levels. We assume the security levels are given
by a lattice L , with a partial order 6L . Security types are defined in the following.
Definition 2.1 A base security type (or base type) t is a mapping fromP to L . We denote with T the
set of base types. Given two base types s and t, we say s = t iff s(P) = t(P) for all P ∈P. We define an
ordering 6T on base types as follows: s 6T t iff ∀ P ∈P, s(P) 6L t(P).

As we shall see, if a variable is typed by a base type, the sensitivity of its content may depend on
the permissions of the app which writes to the variable. In contrast, in traditional information flow
type systems, a variable annotated with a security level has a fixed sensitivity level regardless of the
permissions of the app that writes to the variable.

Next, we show that the set of base types with the order 6T forms a lattice.
Definition 2.2 For s, t ∈ T , s t t and s u t are defined as

(s t t)(P) = s(P) t t(P),∀P ∈P (s u t)(P) = s(P) u t(P),∀P ∈P

Lemma 2.1 6T is a partial order relation on T .
Lemma 2.2 (T ,6T ) forms a lattice.

From now on, we shall drop the subscripts in 6L and 6T when no ambiguity arises.
Accordingly, a security level l can be lifted to the base type l̂ that maps all permission sets to level l

itself, which we call as a level type.
Definition 2.3 Given a security level l, we define l̂ as follows: for all P ∈P, we have l̂(P) = l.
Definition 2.4 A function type has the form t s−→ t, where t = (t1, . . . , tm), m > 0 and t, s, ti are base
types. The types t are the types for the arguments of the function, t is the return type of the function, and
s is the type for the body of the function.

In our type system, security types of expressions (commands, functions, resp.) may be altered de-
pending on the execution context. That is, when an expression is used in a context where a permission
check has been performed (either successfully or unsuccessfully), its type may be adjusted to take into
account the presence or absence of the checked permission. Such an adjustment is called a promotion or
a demotion.
Definition 2.5 Given a permission p, the promotion and demotion of a base type t with respect to p are:

(t ↑p)(P) = t(P ∪ {p}),∀P ∈P (promotion) (t ↓p)(P) = t(P \ {p}),∀P ∈P (demotion)

The promotion and demotion of a function type t s−→ t, where t = (t1, . . . , tm), are respectively:

(t s−→ t) ↑p= t ↑p
s↑p−−→ t ↑p (t s−→ t) ↓p= t ↓p

s↓p−−→ t ↓p

where t ↑p= (t1 ↑p, . . . , tm ↑p) and t ↓p= (t1 ↓p, . . . , tm ↓p).
Lemma 2.3 Given P ∈P and p ∈ P, (a) (t ↑p)(P) = t(P) if p ∈ P; and (b) (t ↓p)(P) = t(P) if p /∈ P.

2.5. Security Type System

We first define a couple of operations on security types and permissions that will be used later.
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T-VAR-L
x ∈ dom(Γ)

(ΓG,Γ) ` x : Γ(x)
T-VAR-G

x ∈ dom(ΓG)

(ΓG,Γ) ` x : ΓG(x)
T-SUBe

(ΓG,Γ) ` e : s s 6 t

(ΓG,Γ) ` e : t

T-OP
(ΓG,Γ) ` e1 : t (ΓG,Γ); A ` e2 : t

(ΓG,Γ) ` e1 op e2 : t
T-SUBc

(ΓG,Γ); A ` c : s t 6 s

(ΓG,Γ); A ` c : t

T-ASS-L
x ∈ dom(Γ) (ΓG,Γ) ` e : Γ(x)

(ΓG,Γ); A ` x := e : Γ(x)
T-ASS-G

x ∈ dom(ΓG) (ΓG,Γ) ` e : ΓG(x)

(ΓG,Γ); A ` x := e : ΓG(x)

T-LETVAR
(ΓG,Γ) ` e : s (ΓG,Γ[x : s]); A ` c : t

(ΓG,Γ); A ` letvar x = e in c : t
T-SEQ

(ΓG,Γ); A ` c1 : t (ΓG,Γ); A ` c2 : t

(ΓG,Γ); A ` c1; c2 : t

T-IF
(ΓG,Γ) ` e : t (ΓG,Γ); A ` c1 : t (ΓG,Γ); A ` c2 : t

(ΓG,Γ); A ` if e then c1 else c2 : t

T-CP
(ΓG,Γ ↑p); A ` c1 : t1 (ΓG,Γ ↓p); A ` c2 : t2

(ΓG,Γ); A ` test(p) c1 else c2 : t1 .p t2
T-WHILE

(ΓG,Γ) ` e : t (ΓG,Γ); A ` c : t

(ΓG,Γ); A ` while e do c : t

T-CALL
FT(B. f ) = t s−→ t′ (ΓG,Γ) ` e : πΘ(A)(t) πΘ(A)(t′) 6 Γ(x)

(ΓG,Γ); A ` x := call B. f (e) : Γ(x) u πΘ(A)(s)

T-FUN
(ΓG, [x : t, r : t′]); B ` c : s

ΓG ` B. f (x)
{

init r = 0 in {c; return r}
}

: t s−→ t′

Fig. 2. Typing rules for expressions, commands and functions.

A function called by different callers may have different the permission contexts, so we define type
projection to extract types according to the permission sets of callers.
Definition 2.6 Given t ∈ T and P ∈P, the projection of t on a permission set P is a security type
πP(t) defined as πP(t)(Q) = t(P), ∀Q ∈P. Type projection of a list of types on P is then written as
πP((t1, . . . , tn)) = (πP(t1), . . . , πP(tn)).

In order to type the permission check test(p) c1 else c2 precisely, we need to construct a type t from
the types t1, t2 respectively for its two branches c1, c2, such that t acts like t1 (t2 resp.) when p is enabled
(disabled resp.).
Definition 2.7 Given a permission p and two types t1 and t2, the merging of t1 and t2 along p, denoted
as t1 .p t2, is:

(t1 .p t2)(P) =

{
t1(P) p ∈ P
t2(P) p 6∈ P

∀P ∈P

A typing environment is a finite mapping from variables to base types. We use the notation [x1 :
t1, . . . , xn : tn] to enumerate a typing environment with domain {x1, . . . , xn}. Typing environments are
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ranged over by Γ. Given Γ1 and Γ2 such that dom(Γ1)∩dom(Γ2) = ∅, we write Γ1Γ2 to denote a typing
environment that is the (disjoint) union of the mappings in Γ1 and Γ2. Accordingly, we split the typing
environment into two parts ΓG and Γ, where ΓG denotes the part for the global variables and Γ denotes
the other part for the non-global ones. And we also require that dom(ΓG) = gv(S).
Definition 2.8 Given a typing environment Γ, its promotion and demotion along p are typing environ-
ments Γ ↑p and Γ ↓p, such that (Γ ↑p)(x) = Γ(x) ↑p and (Γ ↓p)(x) = Γ(x) ↓p for every x ∈ dom(Γ).
The projection of Γ on P ∈P is a typing environment πP(Γ) such that (πP(Γ))(x) = πP(Γ(x)) for each
x ∈ dom(Γ).

There are three typing judgments in our type system as explained below. All these judgments are
implicitly parameterized by a function type table, FT , which maps all function names to function types,
and a mapping Θ assigning permission sets to apps.

• Expression typing: (ΓG,Γ) ` e : t. This says that under (ΓG,Γ), the expression e has a base type
at most t.
• Command typing: (ΓG,Γ); A ` c : t. This means that the command c writes to variables with type

at least t, when executed by app A, under the typing environment (ΓG,Γ).

• Function typing: The typing judgment takes the form:

ΓG ` B. f (x)
{

init r = 0 in {c; return r}
}

: t s−→ t′

where x = (x1, . . . , xn) and t = (t1, . . . , tn) for some n > 0. Functions are polymorphic in the per-
missions of the caller. Intuitively, this means that each caller of the function above with permission

set P “sees” the function as having type πP(t)
πP(s)−−−→ πP(t′). That is, if the function is called from

another app with permission P, then it expects input of type up to πP(t), a return value of type at
most πP(t′), and the type for the function body at least πP(s).

When proving the soundness of our type system, we need to make sure that the system of apps are
well-typed in the following sense:
Definition 2.9 Let S be a system, and let FD, FT, and Θ be its function declaration table, function type
table, and permission assignments. We say S is well-typed under a global typing environment ΓG iff for
every function A. f , ΓG ` FD(A. f ) : FT(A. f ) is derivable.

The typing rules are given in Fig. 2. Most of them are common to information flow type systems [8, 9,
11] except for T-CP and T-CALL. Note that the types for constants depend on the constants themselves.
Taking loc and aid in Section 1 for example, their types are respectively l̂1 and l̂2. Also note that in
the subtyping rule for commands (T-SUBc), the security type of the effect of the command can be
safely downgraded, since typing for commands keeps track of a lower bound of the write effects of the
command. This typing rule for command is standard, see, e.g., [8] for a more detailed discussion.

In T-CP, to type statement test(p) c1 else c2, we type c1 in a promoted typing environment for a
successful permission check on p, and c2 in a demoted typing environment for a failed permission check
on p. The challenge is how to combine the types of the two premises to obtain the type for the conclusion.
One possibility is to force the type of the two premises and the conclusion to be identical (i.e., treat
permission check the same as other if-then-else statements and apply T-IF). This, as we have seen in
Section 1, leads to a loss in precision of the type for test construct. Instead, we consider a more refined
merged type t1 .p t2 for the conclusion, where t1 (t2 resp.) is the type of the left (right resp.) premise.
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To understand the merged type, consider a scenario where the statement is executed in a context where
permission p is present. Then the permission check succeeds and the statement test(p) c1 else c2 is
equivalent to c1. In this case, one would expect that the behavior of test(p) c1 else c2 would be equivalent
to that of c1. This is in fact captured by the equation (t1.p t2)(P) = t1(P) for all P such that p ∈ P, which
holds by definition. A dual scenario arises when p is not in the permissions of the execution context.

In T-CALL, the callee function B. f is assumed to be type checked under the global typing environment
ΓG beforehand and its type is given in the FT table. Here the function B. f is called by A so the type of
B. f as seen by A should be a projection of the type given in FT (B. f ) on the permissions of A (given

by Θ(A)): πΘ(A)(t)
πΘ(A)(s)
−−−−−→ πΘ(A)(t′). Therefore the arguments for the function call should be typed

as Γ ` e : πΘ(A)(t) and the return type (as viewed by A) should be dominated by the type of x, i.e.,
πΘ(A)(t′) 6 Γ(x). Finally, the projection of the body type, i.e., the effect of the function call by A,
should be propagated to the result type: one can think this is the sequential composition of the function
body and the assignment. Due to global variables, we need to accumulate the type (i.e., effects) of the
commands in the function body that involves global variables. But to make our presentation simple, we
do not separate them from local ones. In addition, note that the execution of a function call depends on
the permissions of the caller, but this does not mean the permissions of the caller is passed to the callee.

Attack on global variables. We require that the type of a global variable should be invariant for all
permission sets, that is, the global typing environment ΓG is form of [x1 : l̂1, . . . , xn : l̂n], where xi is
a global variable, li is a security level. The reason is that different from non-global variables, there is
only one copy for global variables. In other words, all the apps share this unique evaluation environment
ηG of global variables (e.g., such as the shared preference files), which could easily lead to information
leaks via global variables. For example, consider a global variable x with a non-constant type, e.g.,
tx = {∅ 7→ L, {p} 7→ H}, and two apps A, B satisfying that A has permission p to access some security
information but B does not. Suppose that A would like to get the security information and store in x. As A
has p, when running on A, the type for x is Ĥ. Therefore, the behavior of A is typeable. Consider another
situation that B would like to get information from x and store in any variable typed of L̂. Similarly, it is
easy to check that the behavior of B is typeable as well. However, if the behavior of A happens before
the behavior of B, then there is an information leak, but the whole system is typeable according to the
discussion above.

Parameter laundering. It is essential that in Rule T-CALL, the arguments e and the return value of
the function call are typed according to the projection of t and t′ on Θ(A). If they are instead typed with
t, then there is a potential implicit flow via a “parameter laundering” attack. To see why, consider the
following alternative to T-CALL:

T-CALL’
FT(B. f ) = t s−→ t′ (ΓG,Γ) ` e : t t′ 6 Γ(x)

(ΓG,Γ); A ` x := call B. f (e) : Γ(x) u s

Notice that the type of the argument e must match the type of the formal parameter of the function B. f .
This is essentially what is adopted in BN system for method calls [11].

Let us consider the example in Listing 3. Let P = {p} and t be the base type t = {∅ 7→ L, {p} 7→ H},
where L and H are bottom and top levels respectively. Here we assume P_INFO is a sensitive value of
security level H that needs to be protected, so function C.getsecret is required to have type ()

t−→ t. That
is, only apps that have the required permission p may obtain the secret value. Suppose the permissions
assigned to the apps are given by: Θ(A) = Θ(B) = ∅,Θ(C) = Θ(M) = {p}. As no global variables
occur here, we omit the global environment ΓG.
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A. f ( x ) { // A does not have permission p
i n i t r = 0 in {

r := c a l l B . g ( x ) ;
re turn r

}
}
B . g ( x ) { // B does not have permission p

i n i t r = 0 in {
t e s t ( p ) r := 0 e l s e r := x ;
re turn r

}
}
C . g e t s e c r e t ( ) { // C has permission p

i n i t r = 0 in {
t e s t ( p ) r := P_INFO e l s e r := 0 ;
re turn r

}
}
M. main ( ) { // M has permission p

i n i t r = 0 in {
l e t v a r xH = 0 in
{

xH := C . g e t s e c r e t ( ) ;
r := c a l l A. f ( xH )

} ;
re turn r

}
}

Listing 3 An example for parameter laundering issue.

If we were to adopt the modified T-CALL’ instead of T-CALL, then we can assign the following types
to the above functions:

FT := {A. f 7→ t L̂−→ L̂; B.g 7→ t L̂−→ L̂; C.getsecret 7→ ()
t−→ t; M.main 7→ ()

L̂−→ L̂}

Notice that the return type of M.main is L̂ despite having a return value that contains sensitive value
P_INFO. If we were to use T-CALL’ in place of T-CALL, the above functions can be typed as shown in
Fig. 3. Finally, still assuming T-CALL’, a partial typing derivation for M.main is given in Fig. 4.

As shown in Fig. 3, B.g can be given type t L̂−→ L̂. Intuitively, it checks that the caller has permission
p. If it does, then B.g returns 0 (non-sensitive), otherwise it returns the argument of the function (i.e.,
x). This is as expected and is sound, under the assumption that the security level of the content of x is
dependent on the permissions of the caller. If the caller of B.g is the original creator of the content of x,
then the assumption is trivially satisfied. The situation gets a bit tricky when the caller simply passes on
the content it receives from another app to x. In our example, app A makes a call to B.g, and passes on
the value of x it receives. In the run where A.f is called from M.main, the value of x is actually sensitive
since it requires the permission p to acquire. However, when it goes through A.f to B.g, the value of x
is perceived as non-sensitive by B, since the caller in this case (A) has no permissions. The use of the
intermediary A in this case in effect launders the permissions associated with x. Therefore, if the rule
T-CALL’ is used in place of T-CALL, the call chain from M.main to A.f and finally to B.g can all be
typed. This is correct in a setting where permissions are propagated along with calling context (e.g.,
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[11]) however it is incorrect in the Android permission model 2.1. To avoid the parameter laundering
problem, our approach is to make sure that an app may only pass an argument to another function if the
app itself is authorized to access the content of the argument in the first place, as formalized in the rule
T-CALL.

FT(B.g) = t L̂−→ L̂ x : t, r : L̂ ` x : t L̂ 6 t
T-CALL’

x : t, r : L̂; A ` r := call B.g(x) : L̂ u L̂ = L̂
T-FUN

` A. f (x)
{

init r = 0 in {r := call B.g(x); return r}
}

: t L̂−→ L̂

x : t ↑p, r : L̂ ↑p; B ` r := 0 : L̂ x : t ↓p, r : L̂ ↓p; B ` r := x : L̂
T-CP

x : t, r : L̂; B ` test(p) r := 0 else r := x : L̂ .p L̂
T-FUN

` B.g(x)
{

init r = 0 in {test(p) r := 0 else r := x; return r}
}

: t L̂−→ L̂

Note that t ↑p= Ĥ, t ↓p= L̂ = L̂ ↓= L̂ ↑ and L̂ .p L̂ = L̂.

r : t ↑p; C ` r := SECRET : Ĥ r : t ↓p; C ` r := 0 : L̂
T-CP

r : t; C ` test(p) r := SECRET else r := 0 : Ĥ .p L̂
T-FUN

` C.getsecret( )
{

init r = 0 in {test(p) r := SECRET else r := 0; return r}
}

: ()
t−→ t

Note that Ĥ .p L̂ = t.

Fig. 3. Typing derivations for functions A.f, B.g and C.getsecret

r : L̂ ` 0 : t

Γ; M ` xH := call C.getsecret( ) : L̂ Γ; M ` r := call A. f (xH) : L̂
T-SEQ

r : L̂, xH : t; M ` xH := call C.getsecret( ); r := call A. f (xH) : L̂
T-LETVAR

r : L̂ ; M ` letvar xH = 0 in xH := call C.getsecret( ); r := call A. f (xH) : L̂
T-FUN

` M.main( ) : ()
L̂−→ L̂

where Γ = {r : L̂, xH : t} and the second and the third leaves are derived, respectively, as follows:

FT(C.getsecret) = ()
t−→ t Γ ` () : () t 6 Γ(xH) = t

T-CALL’
Γ; M ` xH := call C.getsecret( ) : t u t = t

T-SUBc
Γ; M ` xH := call C.getsecret( ) : L̂

FT(A. f ) = t→L̂ L̂ Γ ` xH : t L̂ 6 Γ(r) = L̂
T-CALL’

Γ; M ` r := call A. f (xH) : L̂ u L̂ = L̂

Fig. 4. A typing derivation for function M.main

With the correct typing rule for function calls, the function A. f cannot be assigned type t → L̂, since
that would require the instance of T-CALL (i.e., when making the call to B.g) in this case to satisfy
the constraint x : t, r : L̂ ` x : πΘ(A)(t), where πΘ(A)(t) = L̂, which is impossible since t 66 L̂. What
this means is essentially that in our type system, information received by an app A from the parameters
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cannot be propagated by A to another app B, unless A is already authorized to access the information
contained in the parameter. Note that this only restricts the propagation of such parameters to other apps;
the app A can process the information internally without necessarily violating the typing constraints.

Finally, the reader may check that if we fix the type of B.g to t L̂−→ L̂ then A. f can only be assigned

type L̂ L̂−→ L̂. In no circumstances can M.main be typed, since the statement xH := C.getsecret() forces
xH to have type Ĥ, and thus cannot be passed to A. f as an argument.

Non-monotonic example. Let us consider the example about non-monotonic policy, that is, the func-
tion getInfo in Listing 2. Thanks to the rule T-CP, our system is able to capture the non-monotonic
policy, so that the function getInfo can be precisely typed in our system, whose typing derivation is
given in Fig. 5, where ΓG is omitted for simplicity.

r : l̂1; A ` r := loc : l̂1 r : L̂; A ` r := “” : L̂
T-CP

r : t1; A ` test(q) r := loc else r := “” : t1

r : Ĥ; A ` r := aid + loc : Ĥ r : L̂; A ` r := “” : L̂
T-CP

r : t2; A ` test(q) r := aid + loc else r := “” : t2
T-CP

r : t; A ` test(p) (test(q) r := loc else r := “”) else (test(q) r := aid + loc else r := “”) : t
T-FUN

` A.getIn f o( ) : ()
t−→ t

where t = {∅ 7→ L, {p} 7→ L, {q} 7→ H, {p, q} 7→ l1}, t1 = {∅ 7→ L, {q} 7→ l1} = t ↑p, and t2 = {∅ 7→ L, {q} 7→ H} = t ↓p.

Fig. 5. Typing derivation for functions A.getInfo in Listing 2

2.6. Noninterference and Soundness

We first define an indistinguishability relation between evaluation environments. Such a definition
typically assumes an observer who may observe values of variables at a certain security level. In the
non-dependent setting, the security level of the observer is fixed, say at lO, and valuations of variables at
level lO or below are required to be identical. In our setting, the security level of a variable in a function
can vary depending on the permissions of the caller app (which may be the observer itself), so it may
seem more natural to define indistinguishability in terms of the permission set assigned to the caller app.
However, we argue that such a definition is subsumed by the more traditional definition that is based
on the security level of the observer. Assuming that the observer app is assigned a permission set P,
then given two variables x : t and y : t′, the level of information that the observer can access through
x and y is at most t(P) t t′(P). In general the least upper bound of the security level that an observer
with permission P has access to can be computed from the least upper bound of projections (along P)
of the types of variables and the return types of functions in the system. In the following definition of
indistinguishability, we simply assume that such an upper bound has been computed, and we will not
refer explicitly to the permission set of the observer from which this upper bound is derived.
Definition 2.10 Given two evaluation environments η, η′, a typing environment Γ, a security level lO ∈
L of the observer, the indistinguishability relation =lO

Γ is defined as:

η =lO
Γ η′ iff. ∀x ∈ dom(Γ).

(
Γ(x) 6 l̂O ⇒ η(x) = η′(x)

)
where η(x) = η′(x) holds iff both sides of the equation are defined and equal, or both sides are undefined.

Note that in Definition 2.10, η and η′ may not have the same domain, but they must agree on their
valuations for the variables in the domain of Γ. Note also that since base types are functions from
permissions to security level, the security level lO needs to be lifted to a base type in the comparison
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Γ(x) 6 l̂O. The latter implies that Γ(x)(P) 6 lO (in the latice L ) for every permission set P. If the
base type of each variable assigns the same security level to every permission set (i.e., the security level
is independent of the permissions), then our notion of indistinguishability coincides with the standard
definition for the non-dependent setting.
Lemma 2.4 =lO

Γ is an equivalence relation on EEnv.
Recall that we assume no (mutual) recursions, so every function call chain in a well-typed system is

finite; this is formalized via the rank function below. We will use this as a measure in our soundness
proof (Lemma 2.9).

r(if e then c1 else c2) = max(r(c1), r(c2)) r(x := e) = 0
r(c1; c2) = max(r(c1), r(c2)) r(while e do c) = r(c)

r(test(p) c1 else c2) = max(r(c1), r(c2)) r(letvar x = e in c) = r(c)
r(x := call A. f (e)) = r(FD(A. f )) + 1 r(A. f (x)

{
init r = 0 in {c; return r}

}
) = r(c)

The next two lemmas relate projection, promotion/demotion and the indistinguishability relation.
Lemma 2.5 If p ∈ P, then η =lO

πP(Γ) η
′ iff η =lO

πP(Γ↑p) η
′.

Lemma 2.6 If p /∈ P, then η =lO
πP(Γ) η

′ ⇐⇒ η =lO
πP(Γ↓p) η

′.

The key to the soundness proof is the following two lemmas, which are the analogs to the simple
security property and the confinement property in [8].
Lemma 2.7 Suppose (ΓG,Γ) ` e : t. For P ∈P, if t(P) 6 lO and η1 =lO

πP(Γ) η2, ηG
1 =lO

ΓG η
G
2 , (ηG

1 , η1) `
e v1 and (ηG

2 , η2) ` e v2, then v1 = v2.

Proof. The proof proceeds by induction on the derivation of (ΓG,Γ) ` e : t.
T-VAR-L We have (ΓG,Γ) ` x : Γ(x) = t and x is non-global. Since t(P) 6 lO and η1 =lO

πP(Γ) η2, it is
deducible that v1 = η1(x) = η2(x) = v2.

T-VAR-G We have (ΓG,Γ) ` x : ΓG(x) = t and x is global. Since t(P) 6 lO and ΓG(x) is invariant for
all permission sets, we have ΓG(x) 6 l̂O. Then from ηG

1 =lO
ΓG η

G
2 , we get v1 = ηG

1 (x) = ηG
2 (x) = v2.

T-OP We have the typing derivation

(ΓG,Γ) ` e1 : t (ΓG,Γ) ` e2 : t

(ΓG,Γ) ` e1 op e2 : t

and the evaluations

(ηG
1 , η1) ` ei  v1i

(ηG
1 , η1) ` e1 op e2  v11 op v12

(ηG
2 , η2) ` ei  v2i

(ηG
2 , η2) ` e1 op e2  v21 op v22

By induction on ei, we can get v1i = v2i. Therefore v1 = v2.
T-SUBe we have

(ΓG,Γ) ` e : s s 6 t

(ΓG,Γ) ` e : t

since s(P) 6 t(P) and t(P) 6 lO, then s(P) 6 lO as well, thus the result follows by induction on
(ΓG,Γ) ` e : s.
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Lemma 2.8 Suppose (ΓG,Γ); A ` c : t. Then for any P ∈P, if t(P) � lO and (ηG, η); A; P ` c  
(ηG

1 , η1), then η =lO
πP(Γ) η1 and ηG =lO

ΓG η
G
1 .

Proof. By induction on the derivation of (ΓG,Γ); A ` c : t, with subinduction on the derivation of
(ηG, η); A; P ` c (ηG

1 , η1).
T-ASS-L In this case x is non-global, t = Γ(x) and the typing derivation has the form:

(ΓG,Γ) ` e : Γ(x)

(ΓG,Γ); A ` x := e : Γ(x)

and the evaluation under (ηG, η) takes the form:

(ηG, η) ` e v

(ηG, η); A; P ` x := e (ηG, η[x 7→ v])

That is, η1 = η[x 7→ v] and ηG
1 = ηG. So η and η1 differ possibly only in the mapping of x. Since

Γ(x)(P) = t(P) � lO, that is πP(Γ)(x) � l̂O, the difference in the valuation of x is not observable
at level lO. It then follows from Definition 2.10 that η =lO

πP(Γ) η1.
T-ASS-G In this case x is global, t = ΓG(x) and the typing derivation has the form:

(ΓG,Γ) ` e : ΓG(x)

(ΓG,Γ); A ` x := e : ΓG(x)

and the evaluation under (ηG, η) takes the form:

(ηG, η) ` e v

(ηG, η); A; P ` x := e (ηG[x 7→ v], η)

That is, η1 = η and ηG
1 = ηG[x 7→ v]. So ηG and ηG

1 differ possibly only in the mapping of x. Since
ΓG(x)(P) = t(P) � lO and ΓG(x) is invariant for all permission sets, we have ΓG(x) � l̂O. Then
the difference in the valuation of x is not observable at level lO. It then follows from Definition 2.10
that ηG =lO

ΓG η
G
1 .

T-CALL In this case c has the form x := call B. f (e) and the typing derivation takes the form:

(ΓG,Γ) ` e : πΘ(A)(s) FT(B. f ) = s
sb−→ s′ πΘ(A)(s′) 6 Γ(x)

(ΓG,Γ); A ` x := call B. f (e) : Γ(x) u πΘ(A)(sb)

and we have that t = Γ(x) u πΘ(A)(sb). The evaluation under (ηG, η) is derived as follows:

FD(B. f ) = B. f (y)
{

init r = 0 in {c1; return r}
}

(ηG, η) ` e v
(T1) (ηG, [y 7→ v, r 7→ 0]); B; Θ(A) ` c1  (ηG

2 , η2)

(ηG, η); A; P ` x := call B. f (e) (ηG
2 , η[x 7→ η2(r)])
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where η1 = η[x 7→ η2(r)] and ηG
1 = ηG

2 . Since t(P) 66 lO, we have Γ(x)(P) 66 lO and therefore
Γ(x) 66 lO and η =lO

πP(Γ) η[x 7→ η2(r)], that is, η =lO
πP(Γ) η1.

The remaining is to prove ηG =lO
ΓG ηG

1 . As we consider only well-typed systems, the function
FD(B. f ) is also typable under ΓG:

(T2) (ΓG, [y : s, r : s′]); B ` c1 : sb

ΓG ` B. f (y)
{

init r = 0 in {c1; return r}
}

: s
sb−→ s′

From t(P) � lO, we also deduce πΘ(A)(sb) 66 lO. By induction on (T2) and (T1), we get [y 7→
v, r 7→ 0] =πΘ(A)([y:s,r:s′]) η2 and ηG =lO

ΓG η
G
1 . The latter implies ηG =lO

ΓG η
G
2 .

T-IF This follows straightforwardly from the induction hypothesis.
T-WHILE We look at the case where the condition of the while loop evaluates to true, otherwise it is

trivial. In this case the typing derivation is

(ΓG,Γ) ` e : t (ΓG,Γ); A ` c : t

(ΓG,Γ); A ` while e do c : t

and the evaluation derivation is

(ηG, η) ` e v v 6= 0 (ηG, η); A; P ` c (ηG
2 , η2) (ηG

2 , η2); A; P ` while e do c (ηG
1 , η1)

(ηG, η); A; P ` while e do c (ηG
1 , η1)

Applying the induction hypothesis (on typing derivation) and the inner induction hypothesis (on
the evaluation derivation) we get η =lO

πP(Γ) η2 and ηG =lO
ΓG η

G
2 , and then η2 =lO

πP(Γ) η1 and ηG
2 =lO

ΓG

ηG
1 ; by transitivity of =lO

πP(Γ) the result follows.
T-SEQ This follows from the induction hypothesis and transitivity of the indistinguishability relation.
T-LETVAR This case follows from the induction hypothesis and the fact that we can choose fresh

variables for local variables, and that the local variables are not visible outside the scope of letvar.
T-CP We have:

(ΓG,Γ ↑p); A ` c1 : t1 (ΓG,Γ ↓p); A ` c2 : t2 t = t1 .p t2
(ΓG,Γ); A ` test(p) c1 else c2 : t

There are two possible derivations for the evaluation. In one case, we have

p ∈ P (ηG, η); A; P ` c1  (ηG
1 , η1)

(ηG, η); A; P ` test(p) c1 else c2  (ηG
1 , η1)

Since t(P) � lO and p ∈ P, by Definiton 2.7, we have t1(P) � lO. By induction hypothesis, we
have η =lO

πP(Γ↑p) η1 and ηG =lO
ΓG η

G
1 . by Lemma 2.5, we have η =lO

πP(Γ) η1.
The case where p /∈ P can be handled similarly, making use of Lemma 2.6.

T-SUBc Straightforward by induction.
�
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Before we define the notion of non-interference for a system, we need to define what it means for a
command to be non-interferent.
Definition 2.11 A command c executed in app A is said to be non-interferent iff for all η1, η2, ηG

1 , ηG
2 ,

Γ, ΓG, P, lO, if η1 =lO
πP(Γ) η2, ηG

1 =lO
ΓG η

G
2 , (ηG

1 , η1); A; P ` c (ηG
3 , η3) and (ηG

2 , η2); A; P ` c (ηG
4 , η4)

then η3 =lO
πP(Γ) η4 and ηG

3 =lO
ΓG η

G
4 .

The main technical lemma is that well-typed commands are non-interferent.
Lemma 2.9 Suppose (ΓG,Γ); A ` c : t, for any P ∈P, if η1 =lO

πP(Γ) η2, ηG
1 =lO

ΓG η
G
2 (ηG

1 , η1); A; P ` c 

(ηG
3 , η3), and (ηG

2 , η2); A; P ` c (ηG
4 , η4), then η3 =lO

πP(Γ) η4 and ηG
3 =lO

ΓG η
G
4 .

Proof. If t(P) 66 lO, then according to Lemma 2.8, we have

η3 =lO
πP(Γ) η1 =lO

πP(Γ) η2 =lO
πP(Γ) η4 and ηG

3 =lO
ηG η

G
1 =lO

ΓG η
G
2 =lO

ΓG η
G
4

and thus the lemma follows. In the following, we assume that t(P) 6 lO. The proof proceeds by induction
on r(c), with subinduction on the derivations of (ΓG,Γ); A ` c : t and (ηG

1 , η1); A; P ` c  (ηG
3 , η3). In

the following, we shall omit the superscript lO from =lO
πP(Γ) to simplify presentation.

T-ASS-L In this case, c ≡ x := e, x is non-global, and the typing derivation takes the form:

(ΓG,Γ) ` e : Γ(x)

(ΓG,Γ); A ` x := e : Γ(x)

where t = Γ(x), and suppose the two executions of c are derived as follows:

(ηG
1 , η1) ` e v1

(ηG
1 , η1); A; P ` x := e (ηG

1 , η1[x 7→ v1])

(ηG
2 , η2) ` e v2

(ηG
2 , η2); A; P ` x := e (ηG

2 , η2[x 7→ v2])

So η3 = η1[x 7→ v1], η4 = η2[x 7→ v2], ηG
3 = ηG

1 and ηG
4 = ηG

2 . Note that ηG
3 =ΓG ηG

4 holds
trivially. Let us consider η3 and η4. As t(P) 6 lO, applying Lemma 2.7 to (ηG

1 , η1) ` e  v1 and
(ηG

2 , η2) ` e v2 we get v1 = v2, so it then follows that η3 =πP(Γ) η4.
T-ASS-G In this case, c ≡ x := e, x is global, and the typing derivation takes the form:

(ΓG,Γ) ` e : ΓG(x)

(ΓG,Γ); A ` x := e : ΓG(x)

where t = ΓG(x), and suppose the two executions of c are derived as follows:

(ηG
1 , η1) ` e v1

(ηG
1 , η1); A; P ` x := e (ηG

1 [x 7→ v1], η1)

(ηG
2 , η2) ` e v2

(ηG
2 , η2); A; P ` x := e (ηG

2 [x 7→ v2], η2)

So η3 = η1, η4 = η2, ηG
3 = ηG

1 [x 7→ v1] and ηG
4 = ηG

2 [x 7→ v2]. Note that η3 =πP(Γ) η4 holds
trivially. Let us consider ηG

3 and ηG
4 . As t(P) 6 lO, applying Lemma 2.7 to (ηG

1 , η1) ` e v1 and
(ηG

2 , η2) ` e v2 we get v1 = v2, so it then follows that ηG
3 =ΓG ηG

4 .
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T-IF In this case c ≡ if e then c1 else c2 and we have

(ΓG,Γ) ` e : t (ΓG,Γ); A ` c1 : t (ΓG,Γ); A ` c2 : t

(ΓG,Γ); A ` if e then c1 else c2 : t

The evaluation derivation under (ηG
1 , η1) takes either one of the following forms:

(ηG
1 , η1) ` e v v 6= 0

(ηG
1 , η1); A; P ` c1  (ηG

3 , η3)

(ηG
1 , η1); A; P ` if e then c1 else c2  (ηG

3 , η3)

(ηG
1 , η1) ` e v v = 0

(ηG
1 , η1); A; P ` c2  (ηG

3 , η3)

(ηG
1 , η1); A; P ` if e then c1 else c2  (ηG

3 , η3)

We consider here only the case where v 6= 0; the case with v = 0 can be dealt with similarly. We
first need to show that the evaluation of c under (ηG

2 , η2) would take the same if-branch. That is,
suppose (ηG

2 , η2) ` e v′. Since t(P) 6 lO, we can apply Lemma 2.7 to conclude that v′ = v 6= 0,
hence the evaluation of c under (ηG

2 , η2) takes the form:

(ηG
2 , η2) ` e v′ v′ 6= 0 (ηG

2 , η2); A; P ` c1  (ηG
4 , η4)

(ηG
2 , η2); A; P ` if e then c1 else c2  (ηG

4 , η4)

The lemma then follows straightforwardly from the induction hypothesis.
T-WHILE c ≡ while e do cb and we have

(ΓG,Γ) ` e : t (ΓG,Γ); A ` cb : t

(ΓG,Γ); A ` while e do cb : t

According to Lemma 2.7, if (ηG
1 , η1) ` e v1 and (ηG

2 , η2) ` e v2, then v1 = v2. If both are 0
then the conclusion holds according to (E-WHILE-F). Otherwise, we have

(ηG
1 , η1) ` e v1 v1 6= 0

(ηG
1 , η1); A; P ` cb  (ηG

5 , η5)
(ηG

5 , η5); A; P ` while e do cb  (ηG
3 , η3)

(ηG
1 , η1); A; P ` while e do cb  (ηG

3 , η3)

(ηG
2 , η2) ` e v2 v2 6= 0

(ηG
2 , η2); A; P ` cb  (ηG

6 , η6)
(ηG

6 , η6); A; P ` while e do cb  (ηG
4 , η4)

(ηG
2 , η2); A; P ` while e do cb  (ηG

4 , η4)

Applying the induction hypothesis to (ΓG,Γ); A ` cb : t, (ηG
1 , η1); A; P ` cb  (ηG

5 , η5) and
(ηG

2 , η2); A; P ` cb  (ηG
6 , η6), we obtain η5 =πP(Γ) η6 and ηG

5 =ΓG ηG
6 . Then applying the

inner induction hypothesis to (ηG
5 , η5); A; P ` while e do cb  (ηG

3 , η3) and (ηG
6 , η6); A; P `

while e do cb  (ηG
4 , η4), we obtain η3 =πP(Γ) η4 and ηG

3 =ΓG ηG
4 .

T-SEQ In this case we have c ≡ c1; c2 and (ΓG,Γ); A ` c : t. It holds by induction on c1 and c2.
T-LETVAR In this case we have c ≡ letvar x = e in cb. This case follows from the induction hypoth-

esis and the fact that the mapping for the local variable x is removed in η2 and η′2.
T-CALL In this case, c has the form x := call B. f (e). Suppose the typing derivation is the following

(where we label the premises for ease of reference later):

FT(B. f ) = s
sb−→ s′ (T1) (ΓG,Γ) ` e : πΘ(A)(s) (T2) πΘ(A)(s′) 6 Γ(x)

(ΓG,Γ); A ` x := call B. f (e) : Γ(x) u πΘ(A)(sb)
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where t = Γ(x) u πΘ(A)(sb), and the executions under (ηG
1 , η1) and (ηG

2 , η2) are derived, respec-
tively, as follows:

(E1) (ηG
1 , η1) ` e v1 (E2) (ηG

1 , [y 7→ v1, r 7→ 0]); B; Θ(A) ` c1  (ηG
5 , η5)

(ηG
1 , η1); A; P ` x := call B. f (e) (ηG

5 , η1[x 7→ η5(r)])

(E′1) (ηG
2 , η2) ` e v2 (E′2) (ηG

2 , [y 7→ v2, r 7→ 0]); B; Θ(A) ` c1  (ηG
6 , η6)

(ηG
2 , η2); A; P ` x := call B. f (e) (ηG

6 , η2[x 7→ η6(r)])

where FD(B. f ) = B. f (x)
{

init r = 0 in {c1; return r}
}

, η3 = η1[x 7→ η5(r)], η4 = η2[x 7→
η6(r)], ηG

3 = ηG
5 and ηG

4 = ηG
6 .

Moreover, since we consider only well-typed systems, the function FD(B. f ) is also typable:

(T3) (ΓG, [y : s, r : s′]); B ` c1 : sb

ΓG ` B. f (y)
{

init r = 0 in {c1; return r}
}

: s
sb−→ s′

Let Γ′ = πΘ(A)([y : s, r : s′]). We first prove several claims:

• Claim 1: [y 7→ v1, r 7→ 0] =Γ′ [y 7→ v2, r 7→ 0].
Proof: Let ρ = [y 7→ v1, r 7→ 0] and ρ′ = [y 7→ v2, r 7→ 0]. We only need to check that the
two mappings agree on mappings of y that are of type 6 l̂O. Suppose yu is such a variable,
i.e., Γ′(yu) = u 6 l̂O, and suppose ρ(yu) = vu and ρ′(yu) = v′u for some yu ∈ y. From (E1)
we have (ηG

1 , η1) ` eu  vu and from (E2) we have (ηG
2 , η2) ` eu  v′u, and from (T1) we

have (ΓG,Γ) ` eu : u. Since u 6 l̂O, applying Lemma 2.7, we get vu = v′u.
• Claim 2: η5 =Γ′ η6 and ηG

5 =ΓG ηG
6 .

Proof: From Claim 1, we know that [y 7→ v1, r 7→ 0] =Γ′ [y 7→ v2, r 7→ 0].
If sb(Θ(A)) 66 lO, similarly, the results follows according to Lemma 2.8. Let us assume
sb(Θ(A)) 6 lO. Since r(c1) < r(c), we can apply the outer induction hypothesis to (E2),
(E′2) and (T3) to obtain η5 =Γ′ η6 and ηG

5 =ΓG ηG
6 .

• Claim 3: η1[x 7→ η5(r)] =πP(Γ) η2[x 7→ η6(r)]
Proof: We first note that if Γ(x)(P) 66 lO, then x is not observable at level lO, and thus
the result follows from η1 =πP(Γ) η2. Assume that Γ(x)(P) 6 lO. From (T2), we get
(πΘ(A)(s′))(P) 6 lO. The latter, by Definition 2.6, implies that πΘ(A)(s′) 6 l̂O. Since
r ∈ dom(Γ′), it is obvious that η5(r) = η6(r) From Claim 2.

The statement we are trying to prove, i.e., η3 =πP(Γ) η4 and ηG
3 =ΓG ηG

4 , follows immediately from
Claim 2 and 3 above.

T-CP c ≡ test(p) c1 else c2 and we have

(ΓG,Γ ↑p); A ` c1 : t1 (ΓG,Γ ↓p); A ` c2 : t2 t = t1 .p t2
(ΓG,Γ); A ` test(p) c1 else c2 : t

We need to consider two cases, one where p ∈ P and the other where p 6∈ P.
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Assume that p ∈ P. Then the evaluation of c under (ηG
1 , η1) and (ηG

2 , η2) are respectively:

p ∈ P (ηG
1 , η1); A; P ` c1  (ηG

3 , η3)

(ηG
1 , η1); A; P ` test(p) c1 else c2  (ηG

3 , η3)

p ∈ P (ηG
2 , η2); A; P ` c1  (ηG

4 , η4)

(ηG
2 , η2); A; P ` test(p) c1 else c2  (ηG

4 , η4)

since p ∈ P, we have t1(P) = t(P) 6 lO. Moreover, since η1 =πP(Γ) η2, by Lemma 2.5, we have
η1 =πP(Γ↑p) η2. Therefore by the induction hypothesis applied to c1, we obtain η3 =πP(Γ↑p) η4 and
ηG

3 =ΓG ηG
4 . And by Lemma 2.5, we get η3 =πP(Γ) η4.

For the case where p 6∈ P, we apply a similar reasoning as above, but using Lemma 2.6 in place
of Lemma 2.5.

�

Definition 2.12 Let S be a system with the global typing environment ΓG. A function

A. f (x)
{

init r = 0 in {c; return r}
}

in S with FT (A. f ) = t s−→ t′ is non-interferent iff. for all η1, η2, ηG
1 , ηG

2 , P, v, lO, if the following hold:

• t′(P) 6 lO,
• η1 =lO

πP(Γ) η2 and ηG
1 =lO

ΓG η
G
2 , where Γ = [x : t, r : t′],

• (ηG
1 , η1); A; P ` c (ηG

3 , η3), and (ηG
2 , η2); A; P ` c (ηG

4 , η4),

then η3(r) = η4(r) and ηG
3 =lO

ηG ηG
4 . The system S is non-interferent iff all functions in S are non-

interferent.
Theorem 2.1 Well-typed systems are non-interferent.

Proof. Follows from Lemma 2.9. �

3. Type Inference

This section describes a decidable inference algorithm for the language in Section 2.2. Section 3.1
firstly rewrites the typing rules (Fig. 2) in the form of permission trace rules (Fig. 6), then reduces the
type inference into a constraint solving problem; Section 3.2 provides procedures to solve the generated
constraints.

3.1. Constraint Generation

3.1.1. Permission Tracing
In an IPC between different apps (components), there may be multiple permission checks in a calling

context. Therefore, to infer a security type for an expression, a command or a function, we need to track
the applications of promotions Γ↑p and demotions Γ↓q in their typing derivations. To this end, we keep
the applications symbolic and collect the promotions and demotions into a sequence. In other words,
we treat them as a sequence of promotions ↑p and demotions ↓p applied on a typing environment Γ.
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For example, (Γ ↑p) ↓q can be viewed as an application of the sequence ↑p↓q on Γ. The sequence of
promotions and demotions is called a permission trace and denoted by Λ. The grammar of Λ is:

Λ ::= ⊕p :: Λ | 	 p :: Λ | ε p ∈ P

and its length, denoted by len(Λ), is defined as:

len(Λ) =

{
0 if Λ = ε

1 + len(Λ′) if Λ = }p :: Λ′,} ∈ {⊕,	}

Definition 3.1 Given a base type t and a permission trace Λ, the application of Λ to t, denoted by t · Λ,
is defined as:

t · Λ =


t if Λ = ε

(t ↑p) · Λ′ if ∃p,Λ′, s.t. Λ = ⊕p :: Λ′

(t ↓p) · Λ′ if ∃p,Λ′, s.t. Λ = 	p :: Λ′

We also extend the application of a permission trace Λ to a typing environment Γ (denoted by Γ · Λ),
such that ∀x. (Γ · Λ)(x) = Γ(x) · Λ. Based on permission traces, we give the definition of partial
subtyping relation.
Definition 3.2 The partial subtyping relation6Λ, which is the subtyping relation applied on the permis-
sion trace, is defined as s 6Λ t iff. s · Λ 6 t · Λ.

The application of permission traces to types preserves the subtyping relation.
Lemma 3.1 ∀s, t ∈ T , s 6 t =⇒ s 6Λ t for all Λ.

The following four lemmas discuss the impact of permission checking order on the same or different
permissions.
Lemma 3.2 ∀t ∈ T , p, q ∈ P s.t. p 6= q , t · (}p~ q) = t · (~q} p), where },~,∈ {⊕,	}.
Lemma 3.3 ∀t ∈ T ,(t ·}p) · Λ = (t · Λ) ·}p, where } ∈ {⊕,	} and p /∈ Λ.
Lemma 3.4 ∀t ∈ T , p ∈ P,(t ·}p) ·~p = t · (}p), where },~ ∈ {⊕,	}.
Lemma 3.5 ∀t ∈ T , (t · Λ) · Λ = t · Λ.

Lemmas 3.2 and 3.3 state that the order of applications of promotions and demotions on different
permissions does not affect the result, which enables us to solve the constraints in any order (see Sec-
tion 3.2). Lemmas 3.4 and 3.5 indicate that only the first application takes effect if there exist several
(consecutive) applications of promotions and demotions on the same permission p. Therefore, we can
safely keep only the first application, by removing the other applications on the same permission.

Let occur(p,Λ) be the number of occurrences of p in Λ. We say Λ is consistent iff. occur(p,Λ) ∈
{0, 1} for all p ∈ P. According to Lemmas 3.4 and 3.5, we can safely assume that all permission traces
are consistent; we do so from now on. Moreover, to ensure that the traces collected from the derivations
of commands are consistent, we assume that in nested permission checks of a function definition, each
permission is checked at most once.
Lemma 3.6 ∀s, t ∈ T . ∀p ∈ P.(s .p t) · Λ = (s · Λ) .p (t · Λ), where p /∈ Λ.
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TT-VAR-L
x ∈ dom(Γ)

ΓG; Γ; Λ `tr x : Γ(x)
TT-ASS-L

x ∈ dom(Γ) ΓG; Γ; Λ `tr e : t t 6Λ Γ(x)

ΓG; Γ; Λ `tr x := e : Γ(x)

TT-VAR-G
x ∈ dom(ΓG)

ΓG; Γ; Λ `tr x : ΓG(x)
TT-ASS-G

x ∈ dom(ΓG) ΓG; Γ; Λ `tr e : t t 6Λ ΓG(x)

ΓG; Γ; Λ `tr x := e : ΓG(x)

TT-OP
ΓG; Γ; Λ `tr e1 : t1 ΓG; Γ; Λ `tr e2 : t2

ΓG; Γ; Λ `tr e1 op e2 : t1 t t2
TT-SEQ

ΓG; Γ; Λ; A `tr c1 : t1 ΓG; Γ; Λ; A `tr c2 : t2
ΓG; Γ; Λ; A `tr c1; c2 : t1 u t2

TT-IF
ΓG; Γ; Λ `tr e : t ΓG; Γ; Λ; A `tr c1 : t1 ΓG; Γ; Λ; A `tr c2 : t2 t 6Λ t1 u t2

ΓG; Γ; Λ; A `tr if e then c1 else c2 : t1 u t2

TT-WHILE
ΓG; Γ; Λ `tr e : s ΓG; Γ; Λ; A `tr c : t s 6Λ t

ΓG; Γ; Λ; A `tr while e do c : t

TT-LETVAR
ΓG; Γ; Λ `tr e : s ΓG; Γ[x : s′]; Λ; A `tr c : t s 6Λ s′

ΓG; Γ; Λ; A `tr letvar x = e in c : t

TT-CALL
FT(B. f ) = t sb−→ t′ ΓG; Γ; Λ `tr e : s s 6Λ πΘ(A)(t) πΘ(A)(t′) 6Λ Γ(x)

ΓG; Γ; Λ; A `tr x := call B. f (e) : Γ(x) u πΘ(A)(sb)

TT-CP
ΓG; Γ; Λ :: ⊕p; A `tr c1 : t1 ΓG; Γ; Λ :: 	p; A `tr c2 : t2

ΓG; Γ; Λ; A `tr test(p) c1 else c2 : t1 .p t2

TT-FUN
ΓG; [x : t, r : t′]; ε; B `tr c : sb s 6 sb

ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: t s−→ t′

Fig. 6. Permission trace rules for expressions, commands and functions

Lemma 3.6 states the application of trace Λ and the merging along p are orthogonal if p /∈ Λ. And
the following lemma (Lemma 3.7) indicates the subtyping checking can be divided into two cases: one
applied by ⊕p and the other applied by 	p.
Lemma 3.7 ∀s, t ∈ T . ∀p ∈ P. s 6 t⇐⇒ s · ⊕p 6 t · ⊕p and s · 	p 6 t · 	p.

3.1.2. Permission Trace Rules
We keep the applications of the promotions and demotions symbolically (i.e., representing the appli-

cations as combinations of typing environments and permission traces), and move the subsumption rules
(guarded by permission traces) for expressions and commands to where they are needed. This yields the
syntax-directed typing rules given in Fig. 6, which we call the permission trace rules and mark with a
subscript tr (i.e., `tr). The judgments of the trace rules are similar to those of typing rules, except that
each trace rule is guarded by the permission trace Λ collected from the context, which keeps track of the
adjustments of non-global variables depending on the permission checks, and that the subtyping relation
in the trace rules is the partial subtyping one 6Λ.
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Next, we show the trace rules are sound and complete with respect to the typing rules, that is, an
expression (command, function, resp.) is typeable under the trace rules, if and only if it is typeable under
the typing rules.
Lemma 3.8 (a) If ΓG; Γ; Λ `tr e : t, then (ΓG,Γ · Λ) ` e : (t · Λ).

(b) If ΓG; Γ; Λ; A `tr c : t, then (ΓG,Γ · Λ); A ` c : (t · Λ).

(c) If ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: t s−→ t′, then ΓG ` B. f (x)
{

init r = 0 in {c; return r}
}

:

t s−→ t′.
Lemma 3.9 (a) If (ΓG,Γ · Λ) ` e : t · Λ, then there exists s such that ΓG; Γ; Λ `tr e : s and s 6Λ t.

(b) If (ΓG,Γ · Λ); A ` c : t · Λ, then there exists s such that ΓG; Γ; Λ; A `tr c : s and t 6Λ s.

(c) If ΓG ` B. f (x)
{

init r = 0 in {c; return r}
}

: t
sb−→ s, then ΓG `tr B. f (x)

{
init r = 0 in {c; return r}

}
:

t
sb−→ s.

3.1.3. Constraint Generation Rules
To infer types for functions in System S, we assign a function type α

γ−→ β for each function A. f
whose type is unknown and a type variable γx for each variable x with unknown type respectively, where
α, β, γ, γx are fresh type variables. And we mark the type variables for global variables with superscripts.
Then according to permission trace rules, we try to build a derivation for each function in S, in which
we collect the side conditions (i.e., the partial subtyping relation 6Λ) needed by the rules. If the side
conditions hold under a context, then FD(A. f ) is typed by FT(A. f ) under the same context for each
function A. f in S.

To describe the side conditions (i.e., 6Λ), we define the permission guarded constraints as follows:

c ::= (Λ, LHS 6 RHS )
LHS ::= α | αG | tg | LHS t LHS | πP(LHS )
RHS ::= α | αG | tg | RHS u RHS | RHS .p RHS | πP(RHS )

where Λ is a permission trace, α, αG are fresh type variables for non-global and global variables respec-
tively, and tg is a ground type.

A type substitution is a finite mapping from type variables to security types:

θ ::= ε | α 7→ t, θ | αG 7→ l̂, θ

Definition 3.3 Given a constraint set C and a substitution θ, we say θ is a solution to C, denoted by
θ � C, iff. for each (Λ, tl 6 tr) ∈ C, tlθ 6Λ trθ holds.

The constraint generation rules are presented in Fig. 7, where each rule is marked with a subscript cg
(i.e., `cg), and FTC is the extended function type table such that FTC maps all function names to function
types and their corresponding constraint sets. The judgments of the constraint rules are similar to those
of trace rules, except that each rule generates a constraint set C, which consists of the side conditions
needed by the typing derivation of S. In addition, as the function call chains starting from a command
are finite, the constraint generation will terminate.

Next, we show the constraint rules are sound and complete with respect to permission trace rules, that
is, the constraint set generated by the derivation of an expression (command, function, resp.) under the
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TG-VAR-L
x ∈ dom(Γ)

ΓG; Γ; Λ `cg x : Γ(x) ∅
TG-ASS-L

x ∈ dom(Γ) ΓG; Γ; Λ `cg e : t C

ΓG; Γ; Λ; A `cg x := e : Γ(x) C ∪ {(Λ, t 6 Γ(x))}

TG-VAR-G
x ∈ dom(ΓG)

ΓG; Γ; Λ `cg x : ΓG(x) ∅
TG-ASS-G

x ∈ dom(ΓG) ΓG; Γ; Λ `cg e : t C

ΓG; Γ; Λ; A `cg x := e : ΓG(x) C ∪ {(Λ, t 6 ΓG(x))}

TG-OP
ΓG; Γ; Λ `cg e1 : t1  C1 ΓG; Γ; Λ `cg e2 : t2  C2

ΓG; Γ; Λ `cg e1 op e2 : t1 t t2  C1 ∪C2

TG-SEQ
ΓG; Γ; Λ; A `cg c1 : t1  C1 ΓG; Γ; Λ; A `cg c2 : t2  C2

ΓG; Γ; Λ; A `cg c1; c2 : t1 u t2  C1 ∪C2

TG-IF

ΓG; Γ; Λ; A `cg c1 : t1  C1 ΓG; Γ; Λ; A `cg c2 : t2  C2

ΓG; Γ; Λ `cg e : t Ce C = Ce ∪C1 ∪C2 ∪ {(Λ, t 6 t1 u t2)}
ΓG; Γ; Λ; A `cg if e then c1 else c2 : t1 u t2  C

TG-WHILE
ΓG; Γ; Λ `cg e : s C ΓG; Γ; Λ; A `cg c : t C′

ΓG; Γ; Λ; A `cg while e do c : t C ∪C′ ∪ {(Λ, s 6 t)}

TG-LETVAR
ΓG; Γ; Λ `cg e : s C1 ΓG; Γ[x : α]; Λ; A `cg c : t C2 C = C1 ∪C2 ∪ {(Λ, s 6 α)}

ΓG; Γ; Λ; A `cg letvar x = e in c : t C

TG-CALL

FTC(B. f ) = (t sb−→ t′,C f ) ΓG; Γ; Λ `cg e : s 
⋃

Ce

Ca = {(Λ, s 6 πΘ(A)(t)), (Λ, πΘ(A)(t′) 6 Γ(x))}
ΓG; Γ; Λ; A `cg x := call B. f (e) : Γ(x) u πΘ(A)(sb) C f ∪

⋃
Ce ∪Ca

TG-CP
ΓG; Γ; Λ :: ⊕p; A `cg c1 : t1  C1 ΓG; Γ; Λ :: 	p; A `cg c2 : t2  C2

ΓG; Γ; Λ; A `cg test(p) c1 else c2 : t1 .p t2  C1 ∪C2

TG-FUN
ΓG; [x : α, r : β]; ε; B `cg c : s C

ΓG `cg B. f (x)
{

init r = 0 in {c; return r}
}

: α
γ−→ β C ∪ {(ε, γ 6 s)}

Fig. 7. Constraint generation rules for expressions, commands and functions, given function type table FTC .

constraint rules is solvable, if and only if an expression (command, function, resp.) is typable under trace
rules.
Lemma 3.10 The following statements hold:

(a) If ΓG; Γ; Λ `cg e : t C and θ � C, then ΓGθ; Γθ; Λ `tr e : tθ.
(b) If ΓG; Γ; Λ; A `cg c : t C and θ � C, then ΓGθ; Γθ; Λ; A `tr c : tθ.
(c) If ΓG `cg B. f (x)

{
init r = 0 in {c; return r}

}
: α

γ−→ β  C and θ � C, then ΓGθ `tr

B. f (x)
{

init r = 0 in {c; return r}
}

: θ(α)
θ(γ)−−→ θ(β).
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A. g e t I n f o ( ) {
i n i t r in { // Γ(r) = α

t e s t ( p ) {
t e s t ( q ) r = l o c ; // (⊕p⊕ q, l̂1 6 α)

e l s e r = " " ; // (⊕p	 q, L̂ 6 α)
} e l s e {

t e s t ( q ) r = a i d ++ l o c ; // (	p⊕ q, Ĥ 6 α)

e l s e r = " " ; // (	p	 q, L̂ 6 α)
}
//(ε, αb 6 (α .q α) .p (α .q α))
re turn r ;

}
}
B . fun ( ) { // B has permission q

i n i t r in { // Γ(r) = β

l e t v a r x = " " in { // Γ(x) = γ, (ε, L̂ 6 γ)

t e s t ( p ) r = 0 ; // (⊕p, L̂ 6 β)
e l s e x = c a l l A. g e t I n f o ( ) ;
//FTC(A.getIn f o) = ()

αb−→ α,
//(	p, πΘ(B)(α) 6 γ)

i f x == " " t h e n r = 0 ; // (ε, L̂ 6 β)

e l s e r = 1 ; // (ε, L̂ 6 β), (ε, γ 6 β u β)
}

//(ε, βb 6 (β .p (γ u πΘ(B)(αb))) u (β u β))
re turn r ;

}
}

Listing 4 The example in Listing 2 in a calling context.

Lemma 3.11 The following statements hold:

(a) If ΓG; Γ; Λ `tr e : t, then there exist Γ1,Γ
G
1 , s,C, θ such that ΓG

1 ; Γ1; Λ `cg e : s  C, θ � C,
Γ1θ = Γ, ΓG

1 θ = ΓG and sθ = t.
(b) If ΓG; Γ; Λ; A `tr c : t, then there exist Γ1,Γ

G
1 , s,C, θ such that ΓG

1 ; Γ1; Λ; A `cg c : s C, θ � C,
Γ1θ = Γ, ΓG

1 = ΓG, and sθ = t.

(c) If ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: tp
tb−→ tr, then there exist ΓG

1 , α, β, γ,C, θ such that
ΓG

1 `cg B. f (x)
{

init r = 0 in {c; return r}
}

: α
γ−→ β  C, θ � C, ΓG

1 θ = ΓG, and (α
γ−→ β)θ =

tp
tb−→ tr, where α, β, γ are fresh type variables.

Recall the function getInfo in Listing 2 and assume that getInfo is defined in app A (thus A.getInfo)
and called by app B through the function fun (thus B.fun). The rephrased program is shown in Listing 4,
where l1, l2 are the types for loc and aid respectively, Θ(B) = {q}, and l1 t l2 = H. Let us apply the
constraint generation rules in Fig. 7 on each function, yielding the constraint sets CA and CB

5

CA = {(⊕p⊕ q, l̂1 6 α), (⊕p	 q, L̂ 6 α), (	p⊕ q, Ĥ 6 α), (	p	 q, L̂ 6 α), (ε, αb 6 (α .q α) .p (α .q α))}
CB = {(ε, L̂ 6 γ), (⊕p, L̂ 6 β), (	p, πΘ(B)(α) 6 γ), (ε, L̂ 6 β), (ε, γ 6 β u β),

(ε, βb 6 (β .p (γ u πΘ(B)(αb))) u (β u β))}

5If we split the types for commands into global ones and non-global ones, we could have simpler constraints.
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and the types tA = ()
αb−→ α and tB = ()

βb−→ β for the functions getInfo and fun6 respectively. Thus, the
constraint set Ceg for the whole program is CA ∪CB.

3.2. Constraint Solving

To start with, we present the interpretation and the difference on traces that are needed for constraint
solving. A permission trace Λ is a property on permission sets and can be interpreted as a set of permis-
sion sets. Formally, the interpretation of Λ is

I(Λ) = {P | ∀ ⊕ p ∈ Λ. p ∈ P and ∀ 	 p ∈ Λ. p /∈ P}

We said a permission trace Λ is satisfiable, denoted by ∆(Λ), iff. I(Λ) 6= ∅; and a permission set
P entails Λ, denoted by P � Λ, iff. P ∈ I(Λ). We write ΛP for the permission trace that only P
can entail (i.e., I(ΛP) = {P}). Given two traces Λ1,Λ2, the difference of Λ1 from Λ2, denoted by
dif (Λ1, Λ2), is the trace consisting of the promotions and demotions in Λ1 but not in Λ2. For example,
dif (⊕p	 q⊕ r, 	q⊕ l) = ⊕p⊕ r.

We now present an algorithm for solving the constraints generated by the rules in Fig. 7. For these
constraints, both types appearing on the two sides of subtyping are guarded by the same permission
trace. But during the process of solving these constraints, new constraints, whose two sides of subtyping
are guarded by different traces, may be generated. Take the constraint (Λ, πP(tl) 6 πQ(α)) for example,
tl is indeed guarded by ΛP while α is guarded by ΛQ, where P and Q are different permission sets.
So for constraint solving, we use a generalized version of the permission guarded constraints, allowing
types on the two sides to be guarded by different permission traces: ((Λl, tl) 6 (Λr, tr)), where tl 6= tr.
Likewise, a solution to a generalized constraint set C is a substitution θ, denoted by θ � C, such that for
each ((Λl, tl) 6 (Λr, tr)) ∈ C, (tlθ · Λl) 6 (trθ · Λr) holds.

It is easy to transform a permission guarded constraint set C into a generalized constraint set C′: by
rewriting each (Λ, tl 6 tr) as ((Λ, tl) 6 (Λ, tr)). Moreover, it is trivial that θ � C ⇐⇒ θ � C′. Therefore,
we focus on solving generalized constraints in the following. For example, the constraint set Ceg can be
rewritten as follows, where the first two lines are from CA while the last two lines from CB:

Ceg = {((⊕p⊕ q, l̂1) 6 (⊕p⊕ q, α)), ((⊕p	 q, L̂) 6 (⊕p	 q, α)), ((	p⊕ q, Ĥ) 6 (	p⊕ q, α)),

((	p	 q, L̂) 6 (	p	 q, α)), ((ε, αb) 6 (ε, (α .q α) .p (α .q α))),

((ε, L̂) 6 (ε, γ)), ((⊕p, L̂) 6 (⊕p, β)), ((	p, πΘ(B)(α)) 6 (	p, γ)), ((ε, L̂) 6 (ε, β)),
((ε, γ) 6 (ε, β u β)), ((ε, βb) 6 (ε, (β .p (γ u πΘ(B)(αb))) u (β u β)))}

The constraint solving consists of three steps: 1) decompose types in constraints into ground types
and type variables; 2) saturate the constraint set by the transitivity of the subtyping relation; 3) solve the
final constraint set by merging the lower and upper bounds of same variables and unifying them to emit
a solution.

3.2.1. Decomposition
The first step is to decompose the types into the simpler ones, namely, type variables and ground

types, according to their structures. This decomposition is formalized as the decomposing rules, which
are given in Fig. 8. Rules (CD-CUP), (CD-CAP), (CD-SVAR) and (CD-MEGER0)7 are trivial. Rule

6Indeed, the constraint set for fun is CA ∪ CB, but here we focus on the constraints generated by the function itself.
7Rule (CD-MEGER0) is not necessary but can simplify the constraints as shown in the illustrated example.
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CD-CUP
C ∪ {((Λ, t1 t t2) 6 (Λ′, t))} d C ∪ {((Λ, t1) 6 (Λ′, t)), ((Λ, t2) 6 (Λ′, t))}

CD-CAP
C ∪ {((Λ, t) 6 (Λ′, t1 u t2))} d C ∪ {((Λ, t) 6 (Λ′, t1)), ((Λ, t) 6 (Λ′, t2))}

CD-SVAR
C ∪ {((Λ, α) 6 (Λ, α))} d C

CD-LAPP
C ∪ {((Λ, πP(t)) 6 (Λ′, t′))} d C ∪ {((ΛP, t) 6 (Λ′, t′))}

CD-RAPP
C ∪ {((Λ, t) 6 (Λ′, πP(t′)))} d C ∪ {((Λ, t) 6 (ΛP, t′))}

CD-MERGE0
t1 ≡ t2

C ∪ {((Λ, t) 6 (Λ′, t1 .p t2))} d C ∪ {((Λ, t) 6 (Λ′, t1))}

CD-MERGE1
t1 6≡ t2 C′ = {((Λ :: ⊕p, t) 6 (Λ′ :: ⊕p, t1)), ((Λ :: 	p, t) 6 (Λ′ :: 	p, t2))}

C ∪ {((Λ, t) 6 (Λ′, t1 .p t2))} d C ∪C′

CD-SUB0

tg · Λ 6 sg · Λ′

C ∪ {((Λ, tg) 6 (Λ′, sg))} d C
CD-SUB1

tg · Λ � sg · Λ′

C ∪ {((Λ, tg) 6 (Λ′, sg))} d ⊥

CS-LU
∆(Λ1 :: Λ2) {((Λl :: dif (Λ1 :: Λ2, Λ1), tl) 6 (Λr :: dif (Λ1 :: Λ2, Λ2), tr))} d C′ C′ 6⊆ C

{((Λl, tl) 6 (Λ1, α)), ((Λ2, α) 6 (Λr, tr))} ⊆ C  s C ∪C′

Fig. 8. Constraint solving rules, including decomposition (CD-) and saturation (CS-).

(CD-MEGER1) states that two p-merged types satisfy the relation if and only if both their p-promotions
and p-demotions satisfy the relation, where t can be viewed as a p-merged type t .p t. The projection
of types yields a “monomorphic type” such that any successive trace application makes no changes,
therefore we have (CD-LAPP) and (CD-RAPP). Rules (CD-SUB0) and (CD-SUB1) handle the con-
straints on ground types, where ⊥ denotes the failure case. Let dec be the procedure for the constraint
decomposition.

After decomposition, constraints have one of the forms:

((Λl, α) 6 (Λr, tg)), ((Λl, tg) 6 (Λr, β)), ((Λl, α) 6 (Λr, β))

Considering the constraint set Ceg, these are four constraints that need to be decomposed. Take the
constraint ((ε, βb) 6 (ε, (β .p (γ u πΘ(B)(αb))) u (β u β))) for example, where Θ(B) = {q}. Rules
(CD-CAP), (CD-MEGER1), and (CD-RAPP) are performed, yielding {((ε, βb) 6 (ε, β)), ((	p, βb) 6
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(	p, γ)), ((	p, βb) 6 (	p⊕ q, αb)), ((⊕p, βb) 6 (⊕p, β))}. After decomposing, Ceg becomes

{((⊕p⊕ q, l̂1) 6 (⊕p⊕ q, α)), ((⊕p	 q, L̂) 6 (⊕p	 q, α)), ((	p⊕ q, Ĥ) 6 (	p⊕ q, α)),

((	p	 q, L̂) 6 (	p	 q, α)), ((ε, αb) 6 (ε, α)), ((ε, L̂) 6 (ε, γ)), ((⊕p, L̂) 6 (⊕p, β)),

((	p⊕ q, α) 6 (	p, γ)), ((ε, L̂) 6 (ε, β)), ((ε, γ) 6 (ε, β)), ((ε, βb) 6 (ε, β)),
((	p, βb) 6 (	p, γ)), ((	p, βb) 6 (	p⊕ q, αb)), ((⊕p, βb) 6 (⊕p, β))}

where the constraints in blue are generated via decomposition.

3.2.2. Saturation
Considering a variable α, to ensure any lower bound (e.g., ((Λl, tl) 6 (Λ1, α))) is “smaller” than any

of its upper bound (e.g., ((Λ2, α) 6 (Λr, tr))), we need to saturate the constraint set by adding these
conditions. However, since our constraints are guarded by permission traces, we need to consider lower-
upper bound relations only when the traces of the variable α can be entailed by the same permission
set, namely, the intersection of their interpretations are not empty. In that case, we extend the traces of
both the lower and upper bound constraints such that the traces of α are the same (i.e., Λ1 :: Λ2

8), by
adding the missing traces (i.e., dif (Λ1 :: Λ2, Λ1) for lower bound constraint while dif (Λ1 :: Λ2, Λ2) for
the upper one). This is done by the saturation rule (i.e., CS-LU in Fig. 8). Let sat be the procedure for
the constraint saturation.

Assume that there is an order < on type variables and the smaller variable has a higher priority. If two
variables α, β with α < β are in the same constraint β 6 α (or α 6 β), we consider the variable β with the
larger order is a bound for the variable α with the smaller order during constraint solving, but not vice-
versa. There is a special case where both variables on two sides are the same, e.g., ((Λ, α) 6 (Λ′, α)).
In that case, we regroup all the traces of the variable α as the trace set {Λi | i ∈ I} such that the set is
full (i.e.,

⋃
i∈I I(Λi) = P) and disjoint (i.e., ∀i, j ∈ I.i 6= j ⇒ I(Λi) ∩ I(Λ j) = ∅), and rewrite the

constraints of α w.r.t. the set {Λi | i ∈ I}. A possible trace set is the combination of the promotions and
demotions on the permissions related to the variable α. For example, the combination on the permission
set {p, q} is {⊕p :: ⊕q,⊕p :: 	q,	p :: ⊕q,	p :: 	q}. Then we treat each (Λi, α) as different fresh
variables αi. Therefore, with the ordering, there are no loops like: (Λ, α) 6 . . . 6 (Λ′, α). Note that
different ordering could yield different results.

Let us consider the constraint set Ceg and assume that the order on variables is βb < αb < α < γ < β.
There are four lower bounds and one upper bound for α. But only the lower bound ((	p ⊕ q, Ĥ) 6
(	p ⊕ q, α)) shares the same satisfiable trace with the upper bound ((	p ⊕ q, α) 6 (	p, γ)). So we
saturate the set with the constraint ((	p⊕ q, Ĥ) 6 (	p, γ)). Note that the constraint ((ε, αb) 6 (ε, α))

is not considered as a lower bound for α due to αb < α. Likewise, there are two lower bounds (i.e.,
((ε, L̂) 6 (ε, γ)) and the one newly generated above) and one upper bound (i.e., ((ε, γ) 6 (ε, β))) for
γ. Each lower bound has a satisfiable intersected trace with the upper bound, which yields the following
constraints ((ε, L̂) 6 (ε, β)) (already existing in Ceg) and ((	p ⊕ q, Ĥ) 6 (	p, β)) (extended by 	p).
While there are no upper bounds for β and no lower bounds for αb and βb, so no constraints are generated.

8It should be Λ1 :: dif (Λ1, Λ2) or Λ2 :: dif (Λ2, Λ1). But thanks to Lemmas 3.4 and 3.2, we assume the duplicated
promotions and demotions can be removed implicitly and the remaining promotions and demotions can be reordered if needed.
Here we write Λ1 :: Λ2 for short.
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After saturation, the example set Ceg is

{((ε, βb) 6 (ε, β)), ((	p, βb) 6 (	p, γ)), ((	p, βb) 6 (	p⊕ q, αb)), ((⊕p, βb) 6 (⊕p, β)),

((ε, αb) 6 (ε, α)), ((⊕p⊕ q, l̂1) 6 (⊕p⊕ q, α)), ((⊕p	 q, L̂) 6 (⊕p	 q, α)), ((	p⊕ q, Ĥ) 6 (	p⊕ q, α)),

((	p	 q, L̂) 6 (	p	 q, α)), ((	p⊕ q, α) 6 (	p, γ)), ((	p⊕ q, Ĥ) 6 (	p, γ)), ((ε, L̂) 6 (ε, γ)),

((ε, γ) 6 (ε, β)), ((	p⊕ q, Ĥ) 6 (	p, β)), ((ε, L̂) 6 (ε, β)), ((⊕p, L̂) 6 (⊕p, β))}

where the constraints are rearranged via the ordering and the ones in blue are newly added via saturation.
Given two constraint sets C1,C2, we say C1 entails C2, denoted as C1 � C2, iff. for any substitution

θ, if θ � C1, then θ � C2. We proved that the constraint solving rules are sound and complete, that
is, the original constraint set entails the converted set (obtained by decomposition and saturation), and
vice-versa.
Lemma 3.12 If C  r C′, then C � C′ and C′ � C, where r ∈ {d, s}.
3.2.3. Unification

There are two kinds of variables in our setting: global variables and non-global ones, and the con-
straints for them are all guarded by permission traces. Since the types for non-global variables are de-
pendent on the permission sets, we need to consider the satisfiability of (any subset of) the permission
traces of a non-global variable α under any permission set when constructing a type for it. For that, we
consider the evaluation of a type t guarded by a permission trace Λ along a permission set P. If P � Λ,
according to Definition 2.5 and Lemma 2.3, then the security level along P is preserved after the ap-
plication of Λ. So clearly (t · Λ)(P) = t(P). While for P 6� Λ, the security level along P is no longer
preserved. Let us consider the simple case P 6� 	p (i.e., p ∈ P). According to Definition 2.5, we have
(t · 	p)(P) = (t ↓p)(P) = t(P \ {p}). That is, the security level along a set P containing p is updated
as the one along P \ {p}. Similar to ⊕p. Therefore, for a trace Λ, we have (t · Λ)(P) = t(P · Λ), where
the application P · Λ is defined as P · (⊕p :: Λ′) = (P ∪ {p}) · Λ′, P · (	p :: Λ′) = (P \ {p}) · Λ′,
and P · ε = P. It is easy to show that P · Λ = P if P � Λ. So we can uniform the above two cases into
(t · Λ)(P) = t(P · Λ).

Let us consider a non-global variable α and assume that the constraints on it to be solved are
{((Λl

i, t
l
i) 6 (Λi, α))}i∈I (i.e., the lower bounds) and {((Λ j, α) 6 (Λr

j, t
r
j))} j∈J (i.e., the upper bounds).

According the above discussion, for any permission set P, α can take a type t such that (t · Λi)(P) (i.e.,
t(P ·Λi)) is bigger than (tl

i ·Λl
i)(P) for any Λi and that (t ·Λ j)(P) (i.e., t(P ·Λ j)) is smaller than (tr

j ·Λr
j)(P)

for any Λ j. Consequently, t(P) should be bigger than the union
⊔

P′·Λi=P(tl
i · Λl

i)(P′) and smaller than
the intersection

d
P′·Λ j=P(tr

j · Λr
j)(P′). In other words, t(P) is equivalent to ((

⊔
P′·Λi=P tl

i · Λl
i)(P′) t

α′(P)) u (
d

P′·Λ j=P tr
j · Λr

j)(P′), where α′ is a fresh type variable. Note that the constraint contributes to
t(P) if P entails its guarded permission trace Λ. The type above is exactly what we want. We define the
construction of the above type via the function toType:

toType({(Λl
i, t

l
i,Λi, α)}i∈I , {(Λ j, α,Λ

r
j, t

r
j)} j∈J) =

let S P
I = {(i, P′) | P′ · Λi = P, P′ ⊆ P, i ∈ I} and S P

J = {( j, P′) | P′ · Λ j = P, P′ ⊆ P, j ∈ J} in
{P 7→ (

⊔
(i,P′)∈S P

I
(tl

i · Λl
i)(P′) t α′(P)) u

d
( j,P′)∈S P

J
(tr

j · Λr
j)(P′) | P ⊆ P}

(with the convention
⊔

(i,P′)∈∅ ti(P′) = L and
d

( j,P′)∈∅ t j(P′) = H.) Note that the fresh variables enable
us to get a principal type [18] such that every possible type can be obtained from it via subsumption or
instantiation. In practice, we take the least possible type.

Since the types for global variables are invariant for all permission sets, that is, the type for a global
variable αG should be a level type, e.g., l̂. So the level type l̂ should be bigger than all its lower bounds
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and smaller than all its upper bounds. Let us consider a global variable αG and assume that the constraints
on it to be solved are {((Λl

i, t
l
i) 6 (Λi, α

G))}i∈I (i.e., the lower bounds) and {((Λ j, α
G) 6 (Λr

j, t
r
j))} j∈J

(i.e., the upper bounds). Given a type t, let maxlevel(t) and minlevel(t) denote the maximum level and
the minimum level in type t, respectively. So the level l should be bigger than any maximum level of
all its lower bounds (i.e., l > maxlevel(tl

i · Λl
i)) and smaller than any minimum level of all its upper

bounds (i.e., l 6 minlevel(tr
j · Λr

j)). In other words, l can take any level ranging from
⊔

i∈I maxlevel(tl
i ·

Λl
i) to

d
j∈J minlevel(tr

j · Λr
j), which indicates that l is equivalent to (

⊔
i∈I maxlevel(tl

i · Λl
i) t lαG ) ud

j∈J minlevel(tr
j · Λr

j), where lαG is a fresh level variable. Likewise, we define the construction of the
type above via the function toTypeG:

toTypeG({(Λl
i, t

l
i,Λi, α

G)}i∈I , {(Λ j, α
G,Λr

j, t
r
j)} j∈J) =

let ll =
⊔

i∈I maxlevel(tl
i · Λl

i) and lr =
d

j∈J minlevel(tr
j · Λr

j) in ̂(ll t lαG ) u lr
(with the convention

⊔
i∈∅ li = L and

d
j∈∅ l j = H.)

Moreover, due to the absence of loops in constraints and that the variables are in order, we can solve
the constraints in reverse order on variables by unification. The unification algorithm uni f y is presented
as follows.

uni f y(C) =
let subst θ ((Λl, tl,Λr, tr)) = ((Λl, tlθ,Λr, trθ)) in
if the maximum variable α exists in C

construct a type tα for α via the function toType or toTypeG

let C′ be the remaining constraints in
let C′′ = List.map (subst [α 7→ tα]) C′ in
let θ′ = uni f y(C′′) in θ′[α 7→ tα]

else return []

Consider the constraint set Ceg again and assume the set P of all permissions is {p, q}. Firstly, let us
take the constraints on the maximum variable β, which are the following set without any upper bounds

{((	p⊕ q, Ĥ) 6 (	p, β)), ((ε, L̂) 6 (ε, β)), ((⊕p, L̂) 6 (⊕p, β))}

For the security level along the permission set ∅, there are three combinations contributing to it: (	p, ∅),
(	p, {p}) and (ε, ∅). So the level for ∅ is ((Ĥ ·	p⊕q)(∅)t (Ĥ ·	p⊕q)({p})t (L̂ · ε)(∅)tβ′(∅))uH,
which is equivalent to H. Similar to the other sets. So by applying the function toType, we construct
for β the type tβ = {∅ 7→ H, {p} 7→ (L t β′({p})) u H, {q} 7→ H, {p, q} 7→ (L t β′({p, q})) u H},
where β′ is a fresh variable. For simplicity, we pick the least possible upper bound when constructing
types. So we take {∅ 7→ H, {p} 7→ L, {q} 7→ H, {p, q} 7→ L} as tβ instead. Next, we substitute tβ for all
the occurrences of β in the remaining constraints and continue with the constraints on γ, α, αb, and βb.
Finally, the types constructed for these type variables are tγ = tβ and tα = {∅ 7→ L, {p} 7→ L, {q} 7→
H, {p, q} 7→ l1}, tαb = tα, tβb = tβ, respectively. Therefore, the types we infer for A.getInfo and B.fun

are ()
tα−→ tα and ()

tβ−→ tβ, respectively.
Next, we show that our unification is sound and complete.

Lemma 3.13 If uni f y(C) = θ, then θ � C.
Lemma 3.14 If θ � C, then there exist θ′ and θ′′ such that uni f y(C) = θ′ and θ = θ′θ′′.

Let sol be the function for the constraint solving algorithm, that is, sol(C) = uni f y(sat(dec(C))). It
is provable that the constraint solving algorithm is sound and complete.
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Lemma 3.15 If sol(C) = θ, then θ � C.

Proof. By Lemma 3.12 and Lemma 3.13. �

Lemma 3.16 If θ � C, then there exist θ′ and θ′′ such that sol(C) = θ′ and θ = θ′θ′′.

Proof. By Lemma 3.12 and Lemma 3.14. �

To conclude, an expression (command, function, resp.) is typable, iff it is derivable under the constraint
rules with a solvable constraint set by our algorithm. Therefore, our type inference system is sound and
complete. Moreover, as the function call chains are finite, the constraint generation terminates with
a finite constraint set, which can be solved by our algorithm in finite steps. Thus, our type inference
system terminates.
Theorem 3.1 The type inference system is sound, complete and decidable.

Proof. • sound: By Lemma 3.8, Lemma3.10, and Lemma 3.15.
• complete: By Lemma 3.9, Lemma3.11, and Lemma 3.16.
• decidable: as the function call chains are finite, the constraint generation terminates with a fi-

nite constraint set, which can be solved by sol in finite steps. Thus, the type inference system
terminates.
�

4. A Representation of Types

As given in Definition 2.1, our types are defined as mappings from the power setP of the permission
set P to the lattice L of security levels. Naively encoding types as permission sets leads to an exponential
increase in time as well as size required to process and manipulate them due to the cardinality of the
power set P growing as 2n, where n is the number of permissions. Android, itself, has around 200
permissions9 which can lead to performance decreases due to the time taken to process permissions.
In practice, we can expect a security type to consist only of a few ‘interesting’ mappings for some
combinations of permissions, and a ‘default’ mapping for the rest of the combinations of permissions,
so the actual size of security types used in practice should be much smaller.

There are a number of choices one can make as to how to encode the ‘default’ mappings; for example,
one could use propositional logic, first order logic, or some ad hoc data structures. Two main consid-
erations are the space complexity of the chosen representation (in the average case) and the space/time
complexity of the type-related operations on the representation. Here we choose a representation of types
that builds on the concept of reduced ordered binary decision diagrams (ROBDDs) [20, 21]. ROBDD
has been well-studied and has been applied successfully in areas such as model checking [22], so we
think it is a good choice to build our representation on.

The principle idea behind choosing ROBDDs as the underlying data structure for representing types
lies in the fact that any permission set can be encoded as bit vectors (after fixing an order on these
permissions), namely, the presence or absence of permissions can be represented by a sequence of 1s
and 0s. Taking the permission set P = {p, q} from Listing 2 as example, all the possible permission sets

9https://developer.android.com/reference/android/Manifest.permission.html

https://developer.android.com/reference/android/Manifest.permission.html
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can be represented as the bit vectors {00, 01, 10, 11}. Moreover, as shown in Section 3.2, the permission
traces are interpreted as sets of permission sets and can be considered as boolean logic formulae on
permission sets, where ⊕ and 	 respectively denote the positive and negative literals, corresponding
to the presence or absence of permissions. Thus the encoding of ROBDD enables us to infer our types
directly on the permission traces via the logic connectives. The key is to generate a set of permission
traces {Λi|i ∈ I} for each variable such that they are full (i.e.,

⋃
i∈I I(Λi) = P) and disjoint (i.e.,

∀i, j ∈ I.i 6= j ⇒ I(Λi) ∩ I(Λ j) = ∅). For example, we can infer for β in Listing 4 the type tβ =

{	p 7→ H,⊕p 7→ (L t l⊕p
β ) u H} (no matter what P is), which is a variant of ROBDD, rather than

{∅ 7→ H, {p} 7→ (L t l{p}
β ) u H, {q} 7→ H, {p, q} 7→ (L t l{p,q}

β ) u H} (P = {p, q}).
For simplicity, we shall refer to ROBDDs as just binary decision diagrams (BDDs). BDDs have some

important and useful properties: (i) canonicity, that is to say for a fixed boolean variable ordering, each
boolean function has a canonical (i.e. unique) representation (up to isomorphism) [20, 21]; and (ii) op-
erations on BDDs are efficient. With proper ordering, the time complexity of operations usually depends
linearly on the number of boolean variables [20]. Note that a security type with a two-element lattice
(‘High’ and ‘Low’) is essentially a boolean function. So the worst case space complexity of the BDD
representation (or any known representation of boolean functions, for that matter) is exponential [20].

4.1. Types as Binary Decision Diagrams

In this section, we give the definition of a binary decision diagram that fits our types, which is a
modification10 of the one in [20]. Note that in all our definitions, we assume that a static global order
has been defined on the permissions. This serves two purposes: (i) the concept of representing permission
sets as bit vectors would be meaningless otherwise; and (ii) it helps in the construction of binary decision
diagrams.

To start with, let us consider a general function f : {0, 1}n → S , where S is an arbitrary finite set.
Clearly, we can represent it as a truth table. More specifically, we can represent the function f (x1, . . . , xn)
as a 2n-bit string of values, where each value is some s ∈ S . This string starts with the function value
f (0, . . . , 0) and continues on with f (0, . . . , 0, 1), . . . , f (1, . . . , 1, 1). As an example, the truth table for
the boolean function g = x1 ∧ x2 would be g(0, 0)g(0, 1)g(1, 0)g(1, 1) = FFFT .
Definition 4.1 Given an arbitrary finite set S and a natural number n, a truth table of order n is a string
α ∈ S ∗ of length 2n. A bead of order n is a truth table α of order n that is not square, that is, α can not
be represented as ββ for any string β ∈ S ∗ of length 2n−1.

Given a finite set S , there are |S | beads of order 0; and |S |2 − |S | beads of order 1. In general, there
are |S |2n − |S |2n−1

beads of order n. This is derived simply by removing elements on the diagonal of a
square matrix of order 2n−1, that is, by removing all combinations αβ with α = β, where α, β are truth
tables of order n− 1.

Our modified definition of a binary decision diagram to represent the function f : {0, 1}n → S is
given below.
Definition 4.2 A binary decision diagram (BDD) is a rooted, directed graph with vertex set V con-
taining two types of vertices. A nonterminal vertex (node) m has as attributes an argument index
m.v ∈ {1, 2, · · · , n}; and two children m.l,m.h ∈ V (referred to as low and high respectively). A terminal
vertex (sink or leaf) m has as attribute a value m.val ∈ S , where S is an arbitrary finite set.

10Our modification generalizes the set of outputs from binary to an arbitrary finite set.
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x1

x2 x2

x3 x3 x3 x3

L L L M L H L M

(a) A complete binary decision diagram

x1

x2 x2

x3 x3

L M L H

(b) A reduced binary decision diagram

Fig. 9. Examples of binary decision diagram

Furthermore, a strict ordering restriction is imposed on nonterminal vertices. For any nonterminal
vertex m, if m.l is also nonterminal, then it must be the case that m.v < m.l.v. Similarly, if m.h is
nonterminal, then it must be the case that m.v < m.h.v.

A BDD is reduced if no two nodes are allowed to have the same triple of values (v, l, h). Therefore,
no node m in a reduced BDD is allowed to have m.l = m.h, which indicates that the output does not
depend on this particular node m. Fig. 9 gives two examples of BDDs that represent the same function
fe given in Table 1, wherein n = 3 and S = {L,M,H}. Note that, in this figure and others henceforth,
the dashed lines represent the ‘0’ or low branch. We can see that the first example (i.e., Fig. 9a) is not
reduced, because (i) the leftmost node of x3 has two equal children, and (ii) both the high children of the
nodes x2 are equal. While the second example (i.e., Fig. 9b) is reduced.

Table 1
The truth table of function fe

x1 x2 x3 fe(x1, x2, x3) x1 x2 x3 fe(x1, x2, x3)

0 0 0 L 1 0 0 L
0 0 1 L 1 0 1 H
0 1 0 L 1 1 0 L
0 1 1 M 1 1 1 M

We now show that our modified definition of a BDD still holds the property of canonicity. To that end,
we modify a proof for canonicity as described by Knuth [21].
Theorem 4.1 Given an arbitrary finite set S , any function of the form f : {0, 1}n → S has a unique (up
to isomorphism) reduced binary decision diagram, where n is the number of inputs.

Proof. We argue that every truth table τ can be represented as a power of a unique bead. Let τ be a truth
table of order n that is not a bead. Then, by Definition 4.1, it is the square of a truth table τ′ of order
n − 1. By induction on the order of τ, we have that τ′ = βk, where k is a power of 2, and β is a bead of
order 6 n− 1. Hence, we have that τ can be represented as τ = β2k. We call this β the root of τ (and τ′).
Therefore, by the principle of induction, every truth table τ is a power of a unique bead.

A truth table τ of order n > 0 can be represented as τ0τ1, where τ0 and τ1 are truth tables of order n−1.
By construction, τ represents the function f (x1, x2, . . . , xn) if and only if τ0 represents f (0, x2, . . . , xn)
and τ1 represents f (1, x2, . . . , xn). The functions f (0, x2, . . . , xn) and f (1, x2, . . . , xn) are called subfunc-
tions of f ; and τ0 and τ1 are called subtables of τ. The beads of such a function f are the subtables of
its truth table that are beads.

Now we come to the crux of the argument: the nodes of a binary decision diagram for a function f
(as described above) are in bijection with the beads of f . A function’s truth tables of order n + 1 − k
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(with 1 6 k 6 n) correspond to its subfunctions f (c1, . . . , ck−1, xk, . . . , xn), where ci denotes a binary
value. Hence, the beads of order n + 1 − k correspond to those subfunctions that depend on their first
boolean variable xk. Therefore, every such bead corresponds to a node k in the BDD. Let the truth table
corresponding to this node be τ′ = τ′0τ

′
1, then its l and h attributes point respectively to the nodes that

correspond to the roots of τ′0 and τ′1. �

Considering the function fe in Table 1, the truth table τ fe for fe is LLLMLHLM and hence, all possible
subtables of τ fe are {LLLMLHLM, LLLM, LHLM, LL, LM, LH, L,M,H}. Given this, the beads of fe
then are {LLLMLHLM, LLLM, LHLM, LM, LH, L,M,H}. Note that the subtable LL is not present since
it is not a bead. Fig. 10 showcases the BDD formed by the beads of fe as laid out in Theorem 4.1. Note
the isomorphism between Fig. 9b and 10.

Let us return to our types. As mentioned above, permission sets can be encoded as bit vectors, where
‘0’ represents the absence of a permission and ‘1’ represents the presence of a permission. Moreover, op-
erations on sets such as ∪,∩, \, etc. can easily be transcribed into operations on bit vectors. Accordingly,
we redefine our types as folllows:
Definition 4.3 A base security type t is a mapping from the set of all possible bit vectors representing
permission sets to the lattice of security levels, i.e. t :P→ L . The set of base types is denoted with T .

Using Theorem 4.1, the new definition of a type, and the definition of a binary decision diagram, we
define the representation of types as follows:
Definition 4.4 Let t be a base type. The representation of t, denoted by R(t), is a reduced ordered
binary decision diagram, where each nonterminal node m represents (the position in the static order of)
a permission p ∈ {1, 2, · · · |P|}; the low and high branches of m (i.e., m.l and m.h) represent the absence
and the presence of p, respectively; and each terminal (or sink) node represents an output security level
l ∈ L .

In order to evaluate a permission set for the representation of a given type, one can simply move down
the diagram by choosing the branch that corresponds to the 0-1 value in the bit vector for that particular
permission. If a node for a permission p does not exist, then one can simply skip that permission as the
output security level does not depend on p’s value. Formally, the evaluation of the representation r along
(a bit vector representing) a permission set P can be defined as

r(P) =


r.val r is sink
r.l(P) P[r.v] = 0

r.h(P) P[r.v] = 1

Clearly, it is easy to get that our representation is correct, as shown in Lemma 4.1.
Lemma 4.1 Let t be a type. Then for any permission set P, we have (1) t(P) = R(t)(P); and
(2)R(t)(P) = R(t)(P ∪ {p}) = R(t)(P \ {p}) for any permission p /∈ R(t).

To illustrate, let us consider the type t that maps the sets of permissions {p1} and {p2, p3} to
H, and any other subset of {p1, p2, p3} to L. Fig. 11 show the BDD of t, where the bit vector is
represented as p1 p2 p3. Following the paths to H in the diagram gives us the following bit vectors:
{100, 011}. On the other hand, following the paths to L in the diagram gives us the following bit vectors:
{00x, 010, 101, 11x}, where ‘x’ represents permissions whose values do not affect the output security
level. These values encompass all elements of the powerset P and accurately represents the mapping in
type t as required. Moreover, the permissions whose values do not affect the output security level can be
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LLLMLHLM

LLLM LHLM

LM LH

L M L H

Fig. 10. BDD formed by beads of fe

p1

p2 p2

p3 p3

L H L

Fig. 11. Representation of type t

removed in BDD, which yields the small numbers (i.e., 5 and 6, resp.) of nodes and of paths to the sinks.
In comparison, a binary decision tree would have 23 − 1 nodes and 23 different paths to sinks.

An example in practice is the type t = {∅ 7→ L, {p} 7→ L, {q} 7→ H, {p, q} 7→ l1} used in List-
ing 2. Assuming the order is q, p, the paths to L in the corresponding BDD could be merged, resulting
in fewer nodes and paths. Moreover, many apps or services require more than two permissions, such
as the facial recognition service requiring the permissions for camera and storage (2 permissions for
the storage group) and the video calling service requiring the permissions11 for Wi-Fi, camera, audio,
and storage. These services terminate immediately if any permission is not granted12. So the type for
these services maps the set containing all the required permissions to a non-low security level depending
on the services and the other sets to L, whose representation is given in Figure 12, where the dashed
rectangle denotes a group of permissions, for example, the permission group for storage may contain
READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE. Figure 12 shows that the repre-
sentation requires |P| nodes and |P| + 1 paths to sinks, rather than 2|P| − 1 nodes and 2|P| paths (even
worse if all the permissions are considered), where P is the set of all required permissions. In addition,
some services take different actions depending the granted permissions. For example, the location ser-
vice determines the current location from GPS sensor (requiring the permissions for location), networks
(requiring the permissions for Wi-Fi), or the last known location (requiring the permissions for storage).
The type for the location service would map the set containing any group of required permissions to a
non-low security level for the location and the other sets to L, whose representation is given in Figure 13,
wherein a group is not granted if any one of its permissions is not granted. Similarly, the corresponding
BDD has |P| nodes and at least |P|+ 1 paths to sinks. So we believe the representation will be efficient
in practice.

4.2. Operations on types

Unlike BDDs in [20], the outputs of our BDDs are a multi-value lattice. It is quite difficult to come up
with a general framework describing operations on types as directly working on the Boolean functions
(i.e., BDDs on two-value lattice). Therefore, we directly provide algorithms for operations on types
mentioned in Section 2.4, via reasoning on the structure of the diagram. Here we focus on the operations
only for our types, namely, projection, promotion, demotion, and merging. While the others, namely, the
intersection s u t, the union s t t, and the subtyping s 6 t, could be obtained directly via the APPLY

function as described in [20, 21].

11https://developers.connectycube.com/android/videocalling.
12Such a multiple permission checking refers to https://codingmitra.com/multiple-permission-run-time-in-android/.

https://developers.connectycube.com/android/videocalling
https://codingmitra.com/multiple-permission-run-time-in-android/
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Fig. 12. Representation of type for video calling
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...

pn
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Fig. 13. Representation of type for location

Firstly, with respect to the definition of type presentations, the properties for promotion, demotion,
projection, and merging defined in Definition 2.5, 2.6, and 2.7 still hold.
Lemma 4.2 Given a base type t, a permission p, and a permission set P ∈P, then (1) R(t ↑p)(P) =
R(t)(P ∪ {p}) and (2)R(t ↓p)(P) = R(t)(P \ {p}).
Lemma 4.3 Given a type t and a permission set P ∈ P, then for any permission set Q ∈ P,
R(πP(t))(Q) = R(t)(P).
Lemma 4.4 Given two types t1, t2 and a permission p, then for any permission set P ∈P,

R(t1 .p t2)(P) =

{
R(t1)(P) p ∈ P
R(t2)(P) p 6∈ P

According to Lemma 4.3, we argue that we can simply represent the projection as a binary decision
diagram with a single vertex, being a sink node.
Lemma 4.5 Given a base type t and a permission set P ∈P, the projection of t on P can be represented
as a constant terminal vertex m with m.val = t(P).

The case for promotion and demotion is slightly more complicated. Recalling the Definition 2.5, the
promotion of a base type t with respect to a permission p involves removing all branches where p = 0
and redirecting them to where p = 1. In other words, p is present in all permission sets regardless. We
formalize this intuitive explanation into an algorithm as described in Fig. 14a. Likewise, the algorithm
for demotion is given in Fig. 14b, where all branches with p = 1 are removed and redirected the one
with p = 0 instead.

The function INDEX(p) is a helper function that outputs the position of the permission p in the static
global order; and REDUCE( ) is a procedure which restores the reduced property of a binary decision
diagram [20, 21]. Hence, given a base type t, and a permission p, the promotion operation is performed
in situ by calling PROMOTION(R(t), p).

Fig. 15 shows the promotion of the type t in Fig. 9 with respect to p2, where the dashed lines in red
denote the modifications needed by the promotion.

The correctness of the algorithms for promotion and demotion is given in Lemma 4.6.
Lemma 4.6 Given a base type t and a permission p, then (a) PROMOTION(R(t), p) = R(t ↑p) and
(b) DEMOTION(R(t), p) = R(t ↓p).

One can see that the number of operations required for promoting a type depends on the number of
nodes in R(t), or more accurately, the number of nodes m such that m.v 6 INDEX(p). Note that since
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procedure PROMOTION-RECURSE(r, p)
if r is a sink then

return
else if r.v > INDEX(p) then

return
else if r.v = INDEX(p) then

r.l← r.h
return

end if . when r.v < INDEX(p)
PROMOTION-RECURSE(r.l, p)
PROMOTION-RECURSE(r.h, p)

end procedure
procedure PROMOTION(r, p)

REDUCE(PROMOTION-
RECURSE(r, p))

return
end procedure

(a) Pseudo-code for promotion

procedure DEMOTION-RECURSE(r, p)
if r is a sink then

return
else if r.v > INDEX(p) then

return
else if r.v = INDEX(p) then

r.h← r.l
return

end if . when r.v < INDEX(p)
DEMOTION-RECURSE(r.l, p)
DEMOTION-RECURSE(r.h, p)

end procedure
procedure DEMOTION(r, p)

REDUCE(DEMOTION-
RECURSE(r, p))

return
end procedure

(b) Pseudo-code for demotion

Fig. 14. Algorithms for promotion and demotion

p1

p2 p2

p3 p3

L H L

p1

p2 p2

p3 p3

L H L

p1

p3

L H

(t) (t ↑p2 ) (t ↑p2 )

Promotion

w.r.t. p2

Reduce

Fig. 15. Example for promotion (the dashed lines in red denote the modifications needed by the promotion)

the procedure is performed in situ, we do not actually introduce any new nodes, and in fact our output
will have fewer nodes (than initially) after reduction. Also note that the time complexity of REDUCE( ),
as defined in [21], is O(N + n), where N is the size of the input BDD, and n is the number of boolean
variables. Given the above, we can say that the time complexity of PROMOTION is O(N + n + N) =
O(2N + n). A similar argument can be constructed for the case of DEMOTION as well.

Finally, let us describe how the merge operation could be implemented. Recall the definition: the
merging of two types t1 and t2 along the permission p is:

t1 .p t2(P) =

{
t1(P), p ∈ P
t2(P), p /∈ P

∀P ∈P
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function MERGE-RECURSE(r1, r2, p)
if r1, r2 are sink then

return (p, r2, r1)
else if r1 is sink or r1.v > r2.v then

if r2.v > INDEX(p) then
return (p, r2, r1)

else if r2.v = INDEX(p) then
return (r2.v, r2.l, r1)

else . r2.v < INDEX(p)
return (r2.v, MERGE-RECURSE(r1, r2.l, p), MERGE-RECURSE(r1, r2.h, p))

end if
else if r2 is sink or r1.v < r2.v then

if r1.v > INDEX(p) then
return (p, r2, r1)

else if r1.v = INDEX(p) then
return (r1.v, r2, r1.h)

else . r1.v < INDEX(p)
return (r1.v, MERGE-RECURSE(r1.l, r2, p), MERGE-RECURSE(r1.h, r2, p))

end if
else . r1.v = r2.v

if r1.v > INDEX(p) then
return (p, r2, r1)

else if r1.v = INDEX(p) then . Base Case
return (r1.v, r2.l, r1.h)

else . r1.v < INDEX(p)
return (r1.v, MERGE-RECURSE(r1.l, r2.l, p), MERGE-RECURSE(r1.h, r2.h, p))

end if
end if

end function
function MERGE(r1, r2, p)

return REDUCE(MERGE-RECURSE(r1, r2, p))
end function

Fig. 16. Algorithm for merge

That is, the node of p in the merged diagram is formed by the low branch of the node of p in R(t2) and
the high branch of the node of p inR(t1). Due to the reducing, the permission p may not occur inR(t1)
or R(t2). So we divide the problem into two cases: (i) p occurs in neither R(t1) nor R(t2) (e.g., both
R(t1) andR(t2) are sink or bothR(t1).v andR(t2).v are greater than INDEX(p)); and (ii) p occurs in at
least one ofR(t1) andR(t2). The first case is intuitively easy to reason for: we simply create a node for
p and let the low branch and the high branch point to (the roots of)R(t2) andR(t1), respectively.

The second case is slightly more complex. Let us assume p occurs in bothR(t1) andR(t2) and further
divide it into two subcases: (i) both representations are rooted by p; and (ii) one of the representations is
not rooted by p. For the first subcase, we simply redirect the low branch (i.e. l or ‘0’ branch) of (the root
of) R(t1) to the low branch of (the root of) R(t2). And for the second subcase, we recursively traverse
R(t1) and R(t2) until we reach a point where both the representations are rooted by p, and then merge
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p1 t ⊲p2 s

p2t.lp1 ⊲p2 s.lp1 p2 t.hp1 ⊲p2 s.hp1
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(t) (s) (t ⊲p2 s) (t ⊲p2 s)

Merge t, s

w.r.t. p2

Reduce

Fig. 17. Example for merge

as per the first subcase at that point. Moreover, if p does not occur in R(t1) (resp. R(t2)), then we can
imagine that there is a dummy node for p, where both its low branch and high branch are the smallest
node in R(t1) (resp. R(t2)) that is greater than INDEX(p). The algorithm is a slightly modified version
of the APPLY function as described in [20, 21]. The intuition behind our change lies in, besides the sinks,
all nodes with index no smaller than p are treated as a terminal (i.e. as a base case). Fig. 16 gives the
details for the MERGE( ) algorithm.

An example of the merge of the type t in Fig. 9 and another type s along p2 is given in Fig. 17. The
following lemma shows the correctness of the MERGE( ) algorithm.
Lemma 4.7 Given two types t1, t2 and a permission p, then MERGE(R(t1), R(t2), p) = R(t1 .p t2).

Note that unlike PROMOTION-RECURSE( ) and DEMOTION-RECURSE( ), MERGE-RECURSE( ) con-
structs an entire new diagram such that the p nodes of both diagrams have been merged. Hence, the
space complexity of this operation drastically increases. The time complexity of MERGE-RECURSE( )
has order of |R(t1)| · |R(t2)| as the merge operation essentially creates ordered pairs of nodes of the
two diagrams. Moreover, we can represent the above as a matrix of values. Then we can reduce the time
complexity of MERGE-RECURSE( ) to |R(t1.p t2)|, by only filling entries in the matrix that are reachable
by t1 .p t2.

5. Related work

There is a large body of work on language-based information flow security. We shall discuss only
closely related work.

We have extensively discussed the work by Banerjee and Naumann [11] and highlighted the major
differences between our work and theirs in Section 1.

Flow-sensitive and value-dependent information flow type systems provide a general treatment of
security types that may depend on other program variables or execution contexts [23–41]. Hunt and
Sands [41] proposed a flow-sensitive type system where order of execution is taken into account in the
analysis, and demonstrated that the system is precise. But the system is simpler than ours. Mantel et.
al. [35] introduced a rely-guarantee style reasoning for information flow security in which the same
variable can be assigned different security levels depending on whether some assumption is guaranteed,
which is similar to our notion of permission-dependent security types. Li and Zhang [40] proposed both
flow-sensitive and path-sensitive information flow analysis with program transformation techniques and
dependent types. Information flow type systems that may depend on execution contexts have been con-
sidered in work on program synthesis [24] and dynamic information flow control [34]. Our permission
context can be seen as a special instance of execution context, however, our intended applications and
settings are different from [24, 34], and issues such as parameter laundering does not occur in their set-
ting. Lourenço and Caires [31] provided a precise dependent type system where security labels can be
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indexed by data structures, which can be used to encode the dependency of security labels on other val-
ues in the system. It may be possible to encode our notion of security types as a dependent type in their
setting, by treating permission sets explicitly as an additional parameter to a function or a service, and to
specify security levels of the output of the function as a type dependent on that parameter. Currently it is
not yet clear to us how one could give a general construction of the index types in their type system that
would correspond to our security types, and how the merge operator would translate to their dependent
type constructors, among other things. We leave the exact correspondence to the future work.

Recent research on information flow has also been conducted to deal with Android security issues
([2, 16, 42–46]). SCandroid [2, 46] is a tool automating security certification of Android apps that fo-
cuses on typing communication between applications. Unlike our work, they do not consider implicit
flows, and do not take into account access control in their type system. Ernst et al [42] proposed a veri-
fication model, SPARTA, for use in app stores to guarantee that apps are free of malicious information
flows. Their approach requires the collaboration between software vendor and app store auditor and the
additional modification of Android permission model to fit for their Information Flow Type-checker;
soundness proof is also absent. Our work is done in the context of providing information flow security
certificates for Android applications, following the Proof-Carrying-Code architecture by Necula and
Lee [47] and does not require extra changes on existing Android application supply chain systems. Cas-
sandra [44] performs the security analysis of apps on a server, which employs the proof-carrying code
paradigm such that the server’s analysis result can be validated on the client. H. Gunadi [45] presented
a type system for DEX bytecode and prove the soundness of the type system with respect to a notion
of non-interference. Both [44] and [45] do not consider permission-dependent. ComDroid [16] detects
communication vulnerabilities in Android applications from the perspectives of Intent senders and In-
tent recipients. Weir [43] is a practical DIFC system for Android, allowing data owner applications to
set secrecy policies and control the export of their data to the network. And a number of security anal-
ysis tools, such as TaintDroid [48], DroidSafe [49] and TaintART [50], perform a data flow analysis on
Android apps to track information-flow. But there is no soundness result for these analyses.

A few inference algorithms [51, 52] have been proposed to infer dependent labels. Lifty [51] employed
refinement types to encode information flow security, and proposed an inference algorithm based on the
inference engine of liquid types [53]. While this is a neat solution for a two-level security lattice, the
encoding does not apply to applications that require multiple security labels. Li and Zhang [52] proposed
a general framework for designing and checking label inference algorithms for information flow analysis
with dependent security labels. Based on the framework, novel inference algorithms that are both sound
and complete are developed. The predicated constraint they proposed can express predicate on program
state, and thus is a general version of ours. Limited to our setting, their one-shot algorithm is equivalent
to ours. However, although efficient, the algorithms, except the one-shot one, may be over-conservative.
For example, the early-accept algorithm and hybrid algorithm would infer Ĥ for the motivation example
getInfo listed in 2, which is clearly imprecise. Moreover, Li and Zhang did not provide a principal
solution for their algorithms. This indicates that the algorithms, except the one-shot one, may not be
complete in the sense that every possible solution can be obtained by the algorithm, such as the precise
type for getInfo can’t be obtained from Ĥ via subsumption or instantiation.

6. Conclusion and Future Work

We have provided a lightweight yet precise type system featuring Android permission model for en-
forcing secure information flow in an imperative language and proved its soundness with respect to



44 Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

non-interference. Compared to existing work, our type system can specify a broader range of security
policies, including non-monotonic ones. We have also proposed a decidable type inference algorithm
by reducing it to a constraint solving problem, as well as a new way to represent our security types as
reduced ordered binary decision diagrams.

We next discuss briefly several directions for future work.
The immediate one is to extend our system to richer programming languages, including object-

oriented features (like [54]), exceptions (like [55]), etc. Another extension is to incorporate the efficient
type representation in the inference algorithm. A proposed solution is to encode our permission guarded
constraints as a special BDD, where the outputs are the constraints without guards (i.e., constraints on
the output labels).

We also plan to apply our type system to real Android applications to enforce permission-dependent
information flow policies. A main challenge is to facilitate type inference so that a programmer does not
need to type every variable and instead focuses only on policy specifications of a service. To enable this,
we need to be able to extract all permissions relevant to an app and to identify all commands relevant to
permission checking in an app. The former is straightforward since the permissions that can be granted
to an app is statically specified in the app’s manifest file. For the latter, the permission checking code
segments (typically library function calls) can be located with pre-processed static analyses (e.g., [3, 4]).

Another interesting direction is in modeling runtime permission request. From Android 6.0 and above,
several permissions are classified as dangerous permissions and granting of these permissions is subject
to users’ approval at runtime. This makes enforcing non-monotonic policies impossible in some cases,
e.g., when a policy specifies the absence of a dangerous permission in releasing sensitive information.
However, an app can only request for a permission it has explicitly declared in the manifest file, so
to this extent, we can statically determine whether a permission request is definitely not going to be
granted (as it is absent from the manifest), and whether it can potentially be granted. And fortunately
(but unfortunately from a security perspective) the typical scenarios are that users grant all the requested
permissions during runtime when requested (in order to gain a better user experience with the app).
Therefore one can assume optimistically that all permissions in the manifest are finally granted. In
the future, we plan to resolve this issue with weaker assumptions. One feasible approach is to model
dangerous permissions in a typing environment separately and allow policies to be non-monotonic on
non-dangerous permissions only.

Lastly, our eventual goal is to translate source code typing into Dalvik bytecode typing, following a
similar approach done by Gilles Barthe et al. [55–57] from Java source to JVM bytecode. The key idea
that we describe in the paper, i.e., precise characterizations of security of IPC channels that depends
on permission checks, can still be applied to richer type systems such as those used in the Cassandra
project [44] or Gunadi’s type system [45]. We envision our implementation can piggyback on, say,
Cassandra system to improve the coverage of typable applications.
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Appendix A. Proofs for Soundness

Proof for Lemma 2.1:

Proof. Reflectivity ∀P, t(P) 6L t(P) therefore t 6T t.
Antisymmetry t 6T s ∧ s 6T t ⇐⇒ ∀P, t(P) 6L s(P) ∧ s(P) 6L t(P) therefore ∀P, t(P) = s(P),

which means that s = t.
Transitivity if r 6T s and s 6T t, ∀P, r(P) 6L s(P) and s(P) 6L t(P) therefore r(P) 6L t(P),

which means that r 6T t.
�

Lemma A.1 Given two base types s and t, it follows that

(a) s 6T s t t and t 6T s t t.
(b) s u t 6T s and s u t 6T t.

Proof. Immediately from Definition 2.1. �

Proof for Lemma 2.2:

Proof. ∀s, t ∈P, according to Lemma A.1, st t is their upper bound. Suppose r is another upper bound
of them, i.e., s 6T r and t 6T r, which means ∀P ∈P, (st t)(P) = s(P)t t(P) 6L r(P), so st t 6 r.
Therefore s t t is the least upper bound of {s, t}. Similarly, s u t is s and t’s greatest lower bound. This
makes (T ,6T ) a lattice. �

Proof for Lemma 2.3:

Proof. If p ∈ P, P ∪ {p} = P, therefore (t ↑p)(P) = t(P ∪ {p}) = t(P).
If p /∈ P, P \ {p} = P, therefore (t ↓p)(P) = t(P \ {p}) = t(P). �

Lemma A.2 If s 6 t, then s ↑p6 t ↑p and s ↓p6 t ↓p.

Proof. For P ∈ P, since s 6 t, s(P ∪ {p}) 6 t(P ∪ {p}) and s(P \ {p}) 6 t(P \ {p}), according to
Definition 2.1 and Definition 2.5, the conclusion follows. �

Proof for Lemma 2.4:

Proof. Reflexivity Obviously η =lO
Γ η.

Symmetry Since ∀x ∈ dom(Γ).(Γ(x) 6 l̂O ⇒ η′ =lO
Γ η).

Transitivity If η1 =lO
Γ η2 and η2 =lO

Γ η3, for a given x ∈ dom(Γ), when Γ(x) 6 l̂O, we have η1(x) =
η2(x) and η2(x) = η3(x).

(1) If η1(x) 6= ⊥, then η2(x) 6= ⊥ by the first equation, which in return requires η3(x) 6= ⊥ by
the second equation; by transitivity η1(x) = η3(x)(6= ⊥).

(2) If η1(x) = ⊥, the first equation requires that η2(x) = ⊥, which makes η3(x) = ⊥, therefore
both η1(x) = η3(x)(= ⊥).
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Therefore η1(x) = η3(x).
�

Lemma A.3 If η =lO
Γ η′, then for each P ∈P, η =lO

πP(Γ) η
′.

Proof. ∀x ∈ dom(Γ), we need to prove that when πP(Γ)(x) 6 lO then η(x) = η′(x). But πP(Γ)(x) =
πP(Γ(x)) = t(P), from the definition of η(x) = η′(x), the conclusion holds. �

Proof for Lemma 2.5:

Proof. We first note that dom(πP(Γ)) = dom(πP(Γ ↑p)) since both promotion and projection do not
change the domain of a typing environment. We then show below that πP(Γ) = πP(Γ ↑p), from which
the lemma follows immediately. Given any x ∈ dom(πP(Γ ↑p)), for any Q ∈P, we have

πP(Γ ↑p)(x)(Q)
= (πP(Γ ↑p (x)))(Q) by Def.2.8
= (Γ ↑p (x))(P) by Def. 2.6
= Γ(x)(P ∪ {p}) by Def. 2.5
= Γ(x)(P) by assumption p ∈ P
= (πP(Γ(x)))(Q) by Def. 2.6
= πP(Γ)(x)(Q) by Def. 2.8

Since this holds for arbitrary Q,it follows that πP(Γ ↑p) = πP(Γ). �

Proof for Lemma 2.6:

Proof. Similar to the proof of Lemma 2.5. �

Appendix B. Proofs for Type Inference

Proof for Lemma 3.1:

Proof. By induction on len(Λ).

• Λ = ε. Since s · Λ = s and t · Λ = t, the conclusion holds trivially.
• Λ = ⊕p :: Λ′ or Λ = 	p :: Λ′. Assume it is the former case, the latter is similar. By the hypothesis

and Lemma A.2, s ↑p6 t ↑p. Then by induction, s ↑p ·Λ′ 6 t ↑p ·Λ′, that is, s · Λ 6 t · Λ.

�

Proof for Lemma 3.2:

Proof. We only prove t · (	p⊕ q) = t · (⊕q	 p), the other cases are similar. Consider any P ∈P,

t · (	p⊕ q)(P) = ((t ↓p) ↑q)(P) = (t ↓p (P ∪ {q})) = t((P ∪ {q}) \ {p})
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and

t·(⊕q	p)(P) = ((t ↑q) ↓p)(P) = t((P\{p})∪{q}) = t((P∪{q})\({p}\{q})) = t((P∪{q})\{p})

Therefore, t · (	p⊕ q) = t · (⊕q	 p). �

Proof for Lemma 3.3:

Proof. By induction on len(Λ). The conclusion holds when len(Λ) = 0 and len(Λ) = 1 by Lemma 3.2.
Suppose len(Λ) > 1, there exists Λ′ and q such that Λ = ~q :: Λ′ where ~ ∈ {⊕,	}.

(t ·}p) · Λ = ((t ·}p) ·~q) · Λ′ (by Definition 3.1)
= (t · (}p~ q)) · Λ′ (by Definition 3.1)
= (t · (~q} p)) · Λ′ (by Lemma 3.2)
= ((t ·~q) ·}p) · Λ′ (by Definition 3.1)
= ((t ·~q) · Λ′) ·}p (by induction hypothesis)
= (t · (~q :: Λ′)) ·}p (by Definition 3.1)
= (t · Λ) ·}p

�

Proof for Lemma 3.4:

Proof. By case analysis.

• ((t · ⊕p) · ⊕p)(P) = t(P ∪ {p} ∪ {p}) = t(P ∪ {p}) = t · (⊕p) for each P ∈P.
• ((t · ⊕p) · 	p)(P) = t((P \ {p}) ∪ {p}) = t(P ∪ {p}) = t · (⊕p) for each P ∈P.
• ((t · 	p) · ⊕p)(P) = t((P ∪ {p}) \ {p}) = t(P \ {p}) = t · (	p) for each P ∈P.
• ((t · 	p) · 	p)(P) = t((P \ {p}) \ {p}) = t(P \ {p}) = t · (	p) for each P ∈P.

�

Proof for Lemma 3.5:

Proof. By induction on len(Λ). The conclusion holds trivially for len(Λ) = 0 and for len(Λ) = 1 by
Lemma 3.4 . When len(Λ) > 1, without loss of generality, assume Λ = ⊕p :: Λ′.

t · Λ · Λ = (t · (⊕p · Λ′)) · (⊕p :: Λ′)
= (t · (Λ′ · ⊕p)) · (⊕p :: Λ′) (by Lemma 3.3)
= (((t · Λ′) · ⊕p) · ⊕p) · Λ′ (by Definition 3.1)
= ((t · Λ′) · ⊕p) · Λ′ (by Lemma 3.4)
= ((t · ⊕p) · Λ′) · Λ′ (by Lemma 3.3)
= (t · ⊕p) · Λ′ (by induction hypothesis)
= t · (⊕p :: Λ′) (by Definition 3.1)
= t · Λ

�
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Proof for Lemma 3.6:

Proof. By induction on len(Λ).
len(Λ) = 0: Trivially.
len(Λ) > 0: In this case we have Λ = Λ′ :: ⊕q or Λ′ :: 	q, where len(Λ′) > 0, p /∈ Λ′, q 6= p. We only

prove Λ′ :: ⊕q, the other case is similar. Consider any P, we have

((s .p t) · (Λ′ :: ⊕q))(P)
= ((s .p t) · Λ′)(P ∪ {q})
= ((s · Λ′) .p (t · Λ′))(P ∪ {q}) (By induction)

=

{
(s · Λ′)(P ∪ {q}) p ∈ P
(t · Λ′)(P ∪ {q}) p /∈ P

=

{
(s · (Λ′ :: ⊕q))(P) p ∈ P
(t · (Λ′ :: ⊕q))(P) p /∈ P

= ((s · (Λ′ :: ⊕q)) .p (t · (Λ′ :: ⊕q)))(P)

�

Proof for Lemma 3.7:

Proof. (⇒) by applying Lemma 3.1 with Λ = ⊕p and Λ = 	p respectively.
(⇐) ∀P ∈P,

(1) If p ∈ P, by Lemma 2.3 s(P) = (s ↑p)(P) = (s · ⊕p)(P) and t(P) = (t ↑p)(P) = (t · ⊕p)(P),
since s · ⊕p 6 t · ⊕p, then s(P) 6 t(P).

(2) If p 6∈ P, by Lemma 2.3, s(P) = (s ↓p)(P) = (s · 	p)(P) and t(P) = (t ↓p)(P) = (t · 	p)(P),
since s · 	p 6 t · 	p, then s(P) 6 t(P).

This indicates that s 6 t. �

Proof for Lemma 3.8:

Proof. The proof of (a), by induction on ΓG; Γ; Λ `tr e : t.
TT-VAR-L/G Trivially.
TT-OP In this case we have e ∼= e1 op e2 and the following derivation

ΓG; Γ; Λ `tr e1 : t1 ΓG; Γ; Λ `tr e2 : t2
ΓG; Γ; Λ `tr e1 op e2 : t1 t t2

By induction on ei, we can get (ΓG,Γ · Λ) ` ei : (ti · Λ). By Lemma 3.1 and ti 6 t1 t t2, we have
ti ·Λ 6 (t1t t2) ·Λ. By subsumption, we have (ΓG,Γ ·Λ) ` ei : ((t1t t2) ·Λ). Finally, by applying
Rule (T-OP), we get (ΓG,Γ · Λ) ` e1 op e2 : ((t1 t t2) · Λ).

The proof of (b):
TT-ASS-L In this case we have c ∼= x := e, x is non-global, and the following derivation

(T1) ΓG; Γ; Λ `tr e : t (T2) t 6Λ Γ(x)

ΓG; Γ; Λ; A `tr x := e : Γ(x)
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By (a) on (T1), (ΓG,Γ ·Λ) ` e : (t ·Λ). From (T2), we get t ·Λ 6 (Γ ·Λ)(x). So by subsumption,
(ΓG,Γ · Λ) ` e : (Γ · Λ)(x). Finally, by Rule (T-ASS), the result follows.

TT-ASS-G Similar to the case of (TT-ASS-L).
TT-LETVAR In this case we have c ∼= letvar x = e in c′ and the following derivation

(T1) ΓG; Γ; Λ `tr e : s (T2) s 6Λ s′ (T3) ΓG; Γ[x : s′]; Λ; A `tr c′ : t

ΓG; Γ; Λ; A `tr letvar x = e in c′ : t

By (a) on (T1), (ΓG,Γ · Λ) ` e : (s · Λ). From (T2), we get s · Λ 6 s′ · Λ. So by subsumption,
(ΓG,Γ · Λ) ` e : s′ · Λ. By induction on (T3), we have (ΓG,Γ[x : s′] · Λ); A ` c′ : t · Λ, that is
(ΓG, (Γ · Λ)[x : s′ · Λ]); A ` c′ : t · Λ. Finally, by Rule (T-LETVAR), the result follows.

TT-SEQ By induction and Rules (T-SUBc), (T-SEQ).
TT-IF By induction and Rules (T-SUBc), (T-IF).
TT-WHILE By induction and Rules (T-SUBc), (T-WHILE).
TT-CALL In this case we have c ∼= x := call B. f (e) and the following derivation

(T1) FT(B. f ) = t
sb−→ t′ (T2) ΓG; Γ; Λ `tr e : s (T3) s 6Λ πΘ(A)(t) (T4) πΘ(A)(t′) 6Λ Γ(x)

ΓG; Γ; Λ; A `tr x := call B. f (e) : Γ(x) u πΘ(A)(sb)

By (c) on (T1), ΓG ` B. f : t
sb−→ t′. By (a) on (T2) , (ΓG,Γ · Λ) ` e : s · Λ. From (T3), we

get s · Λ 6 (πΘ(A)(t) · Λ) = πΘ(A)(t). So by subsumption, (ΓG,Γ · Λ) ` e : πΘ(A)(t). Similarly,
from (T4), we get πΘ(A)(t′) 6 (Γ · Λ)(x). Then by Rule (T-CALL), (ΓG,Γ · Λ); A ` x :=
call B. f (e) : (Γ · Λ)(x) u πΘ(A)(sb). Finally, it is easy to check that (Γ · Λ)(x) u πΘ(A)(sb) =
((Γ)(x) u πΘ(A)(sb)) · Λ, the result follows.

TT-CP In this case we have c ∼= test(p) c1 else c2 and the following derivation

ΓG; Γ; Λ :: ⊕p; A `tr c1 : t1 ΓG; Γ; Λ :: 	p; A `tr c2 : t2
ΓG; Γ; Λ; A `tr test(p) c1 else c2 : t1 .p t2

By induction on ci, we have

(ΓG,Γ · (Λ :: ⊕p)); A ` c1 : (t1 · (Λ :: ⊕p)) (ΓG,Γ · (Λ :: 	p)); A ` c2 : (t2 · (Λ :: 	p))

which is equivalent to

(ΓG, (Γ · Λ) ↑p); A ` c1 : (t1 · Λ) ↑p (ΓG, (Γ · Λ) ↓p); A ` c2 : (t2 · Λ) ↓p

Let t′ be (t1 · Λ) ↑p .p (t2 · Λ) ↓p. By Rule (T-CP), we have

(ΓG,Γ · Λ); A ` test(p) c1 else c2 : t′.
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Since Λ is collected from the context of c and there are no nested checks of p, we have p /∈ Λ.
Let’s consider any P. If p ∈ P, then

t′(P) = (t1 · Λ) ↑p (P) (p ∈ P)
= (t1 · Λ)(P) (Lemma 2.3)
= ((t1 · Λ) .p (t2 · Λ))(P) (p ∈ P)
= ((t1 .p t2) · Λ)(P) (Lemma 3.6)

Similarly, if p /∈ P, t′(P) = ((t1 .p t2) · Λ)(P). Therefore, t′ = (t1 .p t2) · Λ and thus the result
follows.

The proof of (c) :
Clearly, we have

ΓG; [x : t, r : t′]; ε; B `tr c : sb s 6 sb

ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: t s−→ t′

Applying (b) on c, (ΓG, [x : t, r : t′]); B ` c : sb. By subsumption, we also have (ΓG, [x : t, r : t′]); B `
c : s. Finally, by Rule (T-FUN), the result follows. �

To prove the completeness, we need to prove some auxiliary lemmas.
Lemma B.1 Let Λ be the permission trace collected from the context of e or c.

(a) If (ΓG,Γ) ` e : t, then (ΓG,Γ · Λ) ` e : (t · Λ)
(b) If (ΓG,Γ); A ` c : t, then (ΓG,Γ · Λ); A ` c : (t · Λ).

Proof. The proof of (a) : by induction on (ΓG,Γ) ` e : t.
T-VAR-L/G Trivially.
T-OP In this case we have e ∼= e1 op e2 and the following derivation

(ΓG,Γ) ` e1 : t (ΓG,Γ) ` e2 : t

(ΓG,Γ) ` e1 op e2 : t

By induction on ei, (ΓG,Γ·Λ) ` ei : (t·Λ). By Rule (T-OP), we have (ΓG,Γ·Λ) ` e1 op e2 : (t·Λ).
T-SUBe In this case we have the following derivation

(T1) (ΓG,Γ) ` e : s (T2) s 6 t

(ΓG,Γ) ` e : t

By induction on (T1), (ΓG,Γ · Λ) `tr e : (s · Λ). From (T2) and Lemma 3.1, we get s · Λ 6 t · Λ.
So by subsumption, the result follows.

The proof of (b): by induction on (ΓG,Γ); A ` c : t.
T-ASS-L In this case we have c ∼= x := e, x is non-global, and the following derivation

(ΓG,Γ) ` e : Γ(x)

(ΓG,Γ); A ` x := e : Γ(x)

By (a) on e, (ΓG,Γ · Λ) ` e : (Γ · Λ)(x). Then by Rule (T-ASS-L), the result follows.
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T-ASS-G similarly to the case of (T-ASS-L).
T-LETVAR In this case we have c ∼= letvar x = e in c′ and the following derivation

(ΓG,Γ) ` e : s (ΓG,Γ[x : s]); A ` c′ : t

(ΓG,Γ); A ` letvar x = e in c′ : t

By (a) on e, (ΓG,Γ ·Λ) ` e : (s ·Λ). By induction on c, (ΓG, (Γ[x : s]) ·Λ); A ` c′ : (t ·Λ), that is
(ΓG, (Γ · Λ)[x : s · Λ]); A ` c′ : (t · Λ). Then by Rule (T-LETVAR), the result follows.

T-SEQ By induction and Rule (T-SEQ).
T-IF By induction and Rule (T-IF).
T-WHILE By induction and Rule (T-WHILE).
T-CALL in this case we have c ∼= x := call B. f (e) and the following derivation

(T1) (ΓG,Γ) ` e : πΘ(A)(t) FT(B. f ) = t s−→ t′ (T2) πΘ(A)(t′) 6 Γ(x)

(ΓG,Γ); A ` x := call B. f (e) : Γ(x) u πΘ(A)(s)

By (a) on (T1), (ΓG,Γ · Λ) ` e : πΘ(A)(t) · Λ, that is, (ΓG,Γ · Λ) ` e : πΘ(A)(t). From (T2)
and Lemma 3.1, πΘ(A)(t′) · Λ 6 (Γ · Λ)(x), that is, πΘ(A)(t′) 6 (Γ · Λ)(x). Then by Rule (T-
CALL), (ΓG,Γ · Λ); A ` x := call B. f (e) : (Γ · Λ)(x) u πΘ(A)(s). Finally, it is each to check that
(Γ · Λ)(x) u πΘ(A)(s) = (Γ(x) u πΘ(A)(s)) · Λ, then the result follows.

T-CP In this case we have c ∼= test(p) c1 else c2 and the following derivation

(ΓG,Γ ↑p); A ` c1 : t1 (ΓG,Γ ↓p); A ` c2 : t2
(ΓG,Γ); A ` test(p) c1 else c2 : t1 .p t2

By induction on c1 and c2, we have

(ΓG, (Γ ↑p) · Λ); A ` c1 : t1 · Λ (ΓG, (Γ ↓p) · Λ); A ` c2 : t2 · Λ

Since Λ is collected from the context of c and there are no nested checks of p, we have p /∈ Λ. By
Lemma 3.3, (Γ ↑p) · Λ = (Γ · Λ) ↑p and (Γ ↓p) · Λ = (Γ · Λ) ↓p. Then by Rule (T-CP), we have

(ΓG,Γ · Λ); A ` test(p) c1 else c2 : (t1 · Λ) .p (t2 · Λ).

Finally, by Lemma 3.6, (t1 .p t2) · Λ = (t1 · Λ) .p (t2 · Λ), and thus the result follows.
T-SUBc In this case we have the following derivation

(T1) (ΓG,Γ); A ` c : s (T2) t 6 s

(ΓG,Γ); A ` c : t

By induction on (T1), (ΓG,Γ · Λ); A ` c : (s · Λ). From (T2) and by Lemma 3.1, t · Λ 6 s · Λ.
Then by subsumption, the result follows.

�
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Lemma B.2 (a) If (ΓG,Γ · Λ) ` e : t, then (ΓG,Γ · Λ) ` e : (t · Λ)
(b) If (ΓG,Γ · Λ); A ` c : t, then (ΓG,Γ · Λ); A ` c : (t · Λ).

Proof. By Lemma B.1 and Lemma 3.5. �

Proof for Lemma 3.9:

Proof. The proof of (a) : by induction on (ΓG,Γ · Λ) ` e : t · Λ.
T-VAR-L Trivially with s = Γ(x).
T-VAR-G In this case we have e ∼= x, x is global, and the following derivation

(ΓG,Γ · Λ) ` x : ΓG(x) ΓG(x) 6 t · Λ
(ΓG,Γ · Λ) ` x : t · Λ

Take s as ΓG(x) and the result follows trivially.
T-OP In this case we have e ∼= e1 op e2 and the following derivation

(ΓG,Γ · Λ) ` e1 : t · Λ (ΓG,Γ · Λ) ` e2 : t · Λ
(ΓG,Γ · Λ) ` e1 op e2 : t · Λ

By induction on ei, there exists si such that ΓG; Γ; Λ `tr ei : si and si 6Λ t. By Rule (TT-OP), we
have ΓG; Γ; Λ `tr e1 op e2 : s1 t s2. Moreover, it is clear that s1 t s2 6Λ t. Therefore, the result
follows.

T-SUBe In this case we have the following derivation

(T1) (ΓG,Γ · Λ) ` e : s (T2) s 6 t · Λ
(ΓG,Γ · Λ) ` e : t · Λ

Applying Lemma B.2 on (T1), (ΓG,Γ · Λ) ` e : s · Λ. Then by induction, there exists s′ such that
ΓG; Γ; Λ `tr e : s′ and s′ 6Λ s. From (T2) and Lemma 3.5, we can get s′ 6Λ t · Λ 6Λ t. Thus the
result follows.

The proof of (b): by induction on (ΓG,Γ · Λ); A ` c : t · Λ.
T-ASS-L In this case we have c ∼= x := e, x is non-global, and the following derivation

(ΓG,Γ · Λ) ` e : (Γ · Λ)(x)

(ΓG,Γ · Λ); A ` x := e : (Γ · Λ)(x)

By (a) on e, there exists s such that ΓG; Γ; Λ `tr e : s and s 6Λ Γ(x). Then by Rule (TT-ASS-L),
ΓG; Γ; Λ; A `tr x := e : Γ(x), and thus the result follows.

T-ASS-G In this case we have c ∼= x := e, x is global, and the following derivation

(T1) (ΓG,Γ · Λ) ` e : ΓG(x)

(ΓG,Γ · Λ); A ` x := e : ΓG(x) (T2) t · Λ 6 ΓG(x)

(ΓG,Γ · Λ); A ` x := e : t · Λ
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Applying Lemma B.2 on (T1), (ΓG,Γ ·Λ) ` e : ΓG(x) ·Λ. And by (a) on e, there exists s such that
ΓG; Γ; Λ `tr e : s and s 6Λ ΓG(x). They by Rule (TT-ASS-G), ΓG; Γ; Λ; A `tr x := e : ΓG(x).
Finally, from (T2), we have t 6Λ ΓG(x).

T-LETVAR In this case we have c ∼= letvar x = e in c′ and the following derivation

(T1) (ΓG,Γ · Λ) ` e : s (T2) (ΓG, (Γ · Λ)[x : s]); A ` c′ : t · Λ
(ΓG,Γ · Λ); A ` letvar x = e in c′ : t · Λ

Applying Lemma B.2 on (T1), (ΓG,Γ · Λ) ` e : s · Λ. Then by (a), there exists s′ such that
ΓG; Γ; Λ `tr e : s′ and s′ 6Λ s. Applying Lemma B.1 on (T2), (ΓG, (Γ · Λ)[x : s]) · Λ); A ` c′ :
(t · Λ) · Λ. And by Lemma 3.5, we have (ΓG,Γ[x : s] · Λ); A ` c′ : (t · Λ). Then by induction,
there exists t′ such that ΓG; Γ[x : s]; Λ; A `tr c′ : t′ and t 6Λ t′. Finally, by Rule (TT-LETVAR),
we have ΓG; Γ; Λ; A `tr letvar x = e in c′ : t′.

T-IF By induction and Rule (TT-IF).
T-WHILE By induction and Rule (TT-WHILE).
T-SEQ By induction and Rule (TT-SEQ).
T-CALL In this case we have c ∼= x := call B. f (e) and the following derivation

FT(B. f ) = tp
tb−→ tr (T1) (ΓG,Γ · Λ) ` e : πΘ(A)(tp) (T2) πΘ(A)(tr) 6 (Γ · Λ)(x)

(ΓG,Γ · Λ); A ` x := call B. f (e) : t′ (T3)

(ΓG,Γ · Λ); A ` x := call B. f (e) : t · Λ

where t′ = (Γ · Λ)(x) u πΘ(A)(tb) and (T3) is t · Λ 6 t′. From (T1), we have (ΓG,Γ · Λ) `
e : (πΘ(A)(tp) · Λ). Then by (a), there exists te such that ΓG; Γ; Λ `tr e : te and te 6Λ πΘ(A)(tp).
From (T2), we have πΘ(A)(tr) 6Λ Γ(x). Then by Rule (TT-CALL), Γ; Λ; A ` x := call B. f (e) :
Γ(x) u πΘ(A)(tb). Finally, it is easy to check t 6Λ Γ(x) u πΘ(A)(tb).

T-CP In this case we have c ∼= test(p) c1 else c2 and the following derivation

(ΓG, (Γ · Λ) ↑p); A ` c1 : t1 (ΓG, (Γ · Λ) ↓p); A ` c2 : t2
(ΓG,Γ · Λ); A ` test(p) c1 else c2 : t1 .p t2 (T1) t · Λ 6 t1 .p t2

(ΓG,Γ · Λ); A ` test(p) c1 else c2 : t · Λ

Clearly, (Γ ·Λ) ↑p= Γ · (Λ :: ⊕p) and (Γ ·Λ) ↓p= Γ · (Λ :: 	p). Applying Lemma B.2 on c1 and
c2 with Λ :: ⊕p and Λ :: 	p respectively, we have

(ΓG,Γ · (Λ :: ⊕p)); A ` c1 : t1 · (Λ :: ⊕p) (ΓG,Γ · (Λ :: 	p)); A ` c2 : t2 · (Λ :: 	p)

By induction, there exist s1 and s2 such that

ΓG; Γ; (Λ :: ⊕p); A `tr c1 : s1 with t1 6Λ::⊕p s1 ΓG; Γ; (Λ :: 	p); A `tr c2 : s2 with t2 6Λ::	p s2

Then by Rule (TT-CP), we have

ΓG; Γ; Λ; A `tr test(p) c1 else c2 : s1 .p s2.
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The remaining is to prove t · Λ 6 (s1 .p s2) · Λ. Since Λ is collected from the context of c and
there are no nested checks of p, we have p /∈ Λ. Consider any P. If p ∈ P, then

((s1 .p s2) · Λ)(P) = ((s1 · Λ) .p (s2 · Λ))(P) (Lemma 3.6)
= (s1 · Λ)(P) (p ∈ P)
= (s1 · (Λ :: ⊕p))(P) (Lemma 2.3)
> (t1 · (Λ :: ⊕p))(P) (t1 6Λ::⊕p s1)
= (t1 · Λ)(P) (Lemma 2.3)
= ((t1 · Λ) .p (t2 · Λ))(P) (p ∈ P)
= ((t1 .p t2) · Λ)(P) (Lemma 3.6)
> ((t · Λ) · Λ)(P) (T1)
= (t · Λ)(P) (Lemma 3.5)

Similarly, if p /∈ P, we also have (t · Λ)(P) 6 ((s1 .p s2) · Λ)(P). Therefore, the result follows.
T-SUBc In this case we have the following derivation

(T1) (ΓG,Γ · Λ); A ` c : s (T2) t · Λ 6 s

(ΓG,Γ · Λ); A ` c : t · Λ

where (T1) does not end of (T-ASS-G), (T-CALL) or (T-CP). Applying Lemma B.2 on (T1),
(ΓG,Γ · Λ); A ` c : s · Λ. Then by induction, there exists s′ such that ΓG; Γ; Λ; A `tr c : s′ and
s 6Λ s′. From (T2) and by Lemma 3.1, we can get t 6Λ s 6Λ s′. Thus the result follows.

The proof of (c):
Clearly, we have

(ΓG, [x : t, r : t′]); B ` c : sb

ΓG ` B. f (x)
{

init r = 0 in {c; return r}
}

: t
sb−→ t′

By (b) on c, there exists tb such that ΓG; [x : t, r : t′]; ε; B `tr c : tb and sb 6ε tb. Thus by Rule (TT-FUN),

ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: t
sb−→ t′

�

Proof for Lemma 3.10:

Proof. The proof of (a): by induction on the derivation of ΓG; Γ; Λ `cg e : t C.
TG-VAR-L In this case we have x is non-global and the following derivation

ΓG; Γ; Λ `cg x : Γ(x) ∅

Clearly, for any θ, θ � ∅. By Rule (TT-VAR), we have

ΓGθ; Γθ; Λ; A `tr x : Γθ(x)
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TG-VAR-G Similarly to the case of (TG-VAR-L).
TG-OP In this case we have e ∼= e1 op e2 and the following derivation

ΓG; Γ; Λ `cg e1 : t1  C1 ΓG; Γ; Λ `cg e2 : t2  C2

ΓG; Γ; Λ `cg e1 op e2 : t1 t t2  C1 ∪C2

Since θ � C1 ∪C2, θ � C1 and θ � C2. Then by induction on ei, ΓGθ; Γθ; Λ `tr ei : tiθ. So by Rule
(TT-OP), we have ΓGθ; Γθ; Λ `tr e1 op e2 : t1θ t t2θ. Clearly, t1θ t t2θ = (t1 t t2)θ.

The proof of (b):
TG-ASS-L In this case we have c ∼= x := e, x is non-global, and the following derivation

ΓG; Γ; Λ `cg e : t Ce

ΓG; Γ; Λ; A `cg x := e : Γ(x) Ce ∪ {(Λ, t 6 Γ(x))}

Since θ � Ce ∪ {(Λ, t 6 Γ(x))}, θ � Ce and tθ 6Λ Γ(x)θ. By (a) on e, ΓGθ; Γθ; Λ `tr e : tθ. By
Rule (TT-ASS), ΓGθ; Γθ; Λ; A `tr x := e : Γθ(x).

TG-ASS-L Similarly to the case of (TG-ASS-G).
TG-LETVAR In this case we have c ∼= letvar x = e in c′ and the following derivation

ΓG; Γ; Λ `cg e : s C1 ΓG; Γ[x : α]; Λ; A `cg c′ : t C2 C = C1 ∪C2 ∪ {(Λ, s 6 α)}
ΓG; Γ; Λ; A `cg letvar x = e in c : t C

Since θ � C, θ � C1, θ � C2, and sθ 6Λ θ(α). By (a) on e, ΓGθ; Γθ; Λ `tr e : sθ. By induc-
tion on c′, ΓGθ; Γθ[x : θ(α)]; Λ; A `tr c′ : tθ. Finally, by Rule (TT-LETVAR), ΓGθ; Γθ; Λ; A `tr

letvar x = e in c : tθ.
TG-CALL In this case we have c ∼= x := call B. f (e) and the following derivation

FTC(B. f ) = (t
sb−→ t′,C f ) ΓG; Γ; Λ `cg e : s 

⋃
Ce

Ca = {(Λ, s 6 πΘ(A)(t)), (Λ, πΘ(A)(t′) 6 Γ(x))} C = C f ∪
⋃

Ce ∪Ca

ΓG; Γ; Λ; A `cg x := call B. f (e) : Γ(x) u πΘ(A)(sb) C

Since θ � C, then θ � C f , θ � Ce, sθ 6Λ πΘ(A)(tθ), and πΘ(A)(t′θ) 6Λ Γθ(x)). By (c) on B. f , we
have

ΓGθ `tr B. f (x)
{

init r = 0 in {c; return r}
}

: tθ
sbθ−→ t′θ

that is, FT(B. f ) = tθ
sbθ−→ t′θ. By (a) on e,

ΓGθ; Γθ; Λ; A `tr e : sθ.

Finally, by Rule (TT-CALL),

ΓGθ; Γθ; Λ; A `tr x := call B. f (e) : Γθ(x) u πΘ(A)(sbθ)
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TG-CP In this case we have c ∼= test(p) c1 else c2 and the following derivation

ΓG; Γ; Λ :: ⊕p; A `cg c1 : t1  C1 ΓG; Γ; Λ :: 	p; A `cg c2 : t2  C2

Γ; Λ; A `cg test(p) c1 else c2 : t1 .p t2  C1 ∪C2

Since θ � C1 ∪C2, then θ � C1 and θ � C2. By induction on c1 and c2, we get

ΓGθ; Γθ; (Λ :: ⊕p); A `tr c1 : t1θ ΓGθ; Γθ; (Λ :: 	p); A `tr c2 : t2θ

By Rule (TT-CP), we have

ΓGθ; Γθ; Λ; A `tr test(p) c1 else c2 : t1θ .p t2θ

Moreover, it is clear that (t1 .p t2)θ = (t1θ) .p (t2θ).
others By induction.
The proof of (c):

ΓG; [x : α, r : β]; ε; B `cg c : s Cb C = Cb ∪ {(ε, γ 6 s)}

ΓG;`cg B. f (x)
{

init r = 0 in {c; return r}
}

: α
γ−→ β C

As θ � C, we have θ � Cb and θ(γ) 6ε sθ. By (b) on c, we have

ΓGθ; [x : θ(α), r : θ(β)]; ε; B `tr c : sθ

Finally, by Rule (TT-FUN), we get

ΓGθ `tr B. f (x)
{

init r = 0 in {c; return r}
}

: θ(α)
θ(γ)−−→ θ(β)

�

Proof for Lemma 3.11:

Proof. The proof of (a): Let Γ0 = {x 7→ αx | x ∈ dom(Γ)}, ΓG
0 = {x 7→ αx | x ∈ dom(ΓG)}, and

θ0 = {αx 7→ Γ(x) | x ∈ dom(Γ)} ∪ {αx 7→ ΓG(x) | x ∈ dom(ΓG)}, where αxs are fresh type variables.
Clearly, we have Γ0θ0 = Γ and ΓG

0 θ0 = ΓG. The remaining is to prove that

∃C, s. ΓG
0 ; Γ0; Λ `cg e : s C, θ0 � C and sθ0 = t (1)

TT-VAR-L In this case we have e ∼= x, x is non-global, and the following derivation

x ∈ dom(Γ)

ΓG; Γ; Λ `tr x : Γ(x)

By Rule (TG-VAR), we have ΓG
0 ; Γ0; Λ `cg x : Γ0(x) ∅. Clearly, θ0 � ∅ and Γ0θ0(x) = Γ(x).
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TT-VAR-G Similarly to the case of (TT-VAR-L).
TT-OP In this case we have e ∼= e1 op e2 and the following derivation

ΓG; Γ; Λ `tr e1 : t1 ΓG; Γ; Λ `tr e2 : t2
ΓG; Γ; Λ `tr e1 op e2 : t1 t t2

By induction on ei, there exist Ci, si such that

ΓG
0 ; Γ0; Λ `cg ei : si  Ci, θ0 � Ci and siθ0 = ti.

By Rule (TG-OP), we have

ΓG
0 ; Γ0; Λ `cg e1 op e2 : s1 t s2  C1 ∪C2.

Moreover, it is clear that θ0 � C1 ∪C2 and (s1 t s2)θ0 = t1 t t2.
The proof of (b). Let Γ0 = {x 7→ αx | x ∈ dom(Γ)}, ΓG

0 = {x 7→ αx | x ∈ dom(ΓG)}, and θ0 = {αx 7→
Γ(x) | x ∈ dom(Γ)} ∪ {αx 7→ ΓG(x) | x ∈ dom(ΓG)}, where αxs are fresh type variables. Clearly, we
have Γ0θ0 = Γ and ΓG

0 θ0 = ΓG. Assume that different parameters of different functions have different
names, and let V1 ] V2 denote V1 ∩ V2 = ∅. In the remaining we prove the following statement:
∃C, s, θ. ΓG

0 ; Γ0; Λ; A `cg c : s C, dom(θ0) ] dom(θ), θ0 ∪ θ � C, and s(θ0 ∪ θ) = t (2)
TT-ASS-L In this case we have c ∼= x := e, x is non-global, and the following derivation

x ∈ dom(Γ) ΓG; Γ; Λ `tr e : t′ t′ 6Λ Γ(x)

Γ; Λ; A `tr x := e : Γ(x)

By (1) on e, there exist C, s′ such that ΓG
0 ; Γ0; Λ `cg e : s′  C, θ0 � C and s′θ0 = t′. By Rule

(TG-ASS), we get

ΓG
0 ; Γ0; Λ; A `cg x := e : Γ0(x) C ∪ {(Λ, t′ 6 Γ0(x))}.

Take θ = ∅. Since s′θ0 = t′ 6Λ Γ(x) = Γ0θ0(x), then θ0 � {(Λ, t′ 6 Γ0(x))}, and thus
θ0 � C ∪ {(Λ, t′ 6 Γ0(x))}.

TT-ASS-G Similarly to the case of (TT-ASS-L).
TT-LETVAR In this case we have c ∼= letvar x = e in c′ and the following derivation

ΓG; Γ; Λ `tr e : te te 6Λ t′e ΓG; Γ[x : t′e]; Λ; A `tr c′ : t

ΓG; Γ; Λ; A `tr letvar x = e in c′ : t

By (1) on e, there exist Ce, se such that ΓG
0 ; Γ0; Λ `cg e : se  Ce, θ0 � Ce and seθ0 = te.

Let Γ′0 = Γ0[x : αx] and θ′0 = θ0 ∪ {αx 7→ t′e}, where αx is fresh. By induction on c′, there exist
C′, t′, θ such that ΓG

0 ; Γ′0; Λ; A `cg c′ : t′  C′, dom(θ′0) ] dom(θ), θ′0 ∪ θ � C′, and t′(θ′0 ∪ θ) = t.
By Rule (TG-LETVAR), we have

ΓG
0 ; Γ0; Λ; A `cg letvar x = e in c : t′  C



62 Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

where C = Ce ∪ C′ ∪ {(Λ, se 6 αx)}. Let θ′ = θ ∪ {αx 7→ t′e}. It is clear that dom(θ0) ] dom(θ′)
and θ0 ∪ θ′ = θ′0 ∪ θ. From the construction of θ′ (i.e., the proof of (2) and (3)), the type variables
in dom(θ′) are collected from the types of the functions and local variables, which are fresh. So
we also have θ0 ∪ θ′ � Ce, Γ0(θ0 ∪ θ′) = Γ0θ0 = Γ and ΓG

0 (θ0 ∪ θ′) = ΓG
0 θ0 = ΓG. Moreover,

se(θ0 ∪ θ′) = seθ0 = te 6Λ t′e = αx(θ0 ∪ θ′). Therefore, θ0 ∪ θ′ � C.
TT-CALL In this case we have c ∼= x := call B. f (e) and the following derivation

FT(B. f ) = tp
tb−→ tr ΓG; Γ; Λ `tr e : se se 6Λ πΘ(A)(tp) πΘ(A)(tr) 6Λ Γ(x)

ΓG; Γ; Λ; A `tr x := call B. f (e) : Γ(x) u πΘ(A)(tb)

By (3) on B.f, there exist α, β, γ,C f , θ f such that

ΓG
0 `cg B. f (x)

{
init r = 0 in {c; return r}

}
: α

γ−→ β C f ,

θ f � C f and (α
γ−→ β)θ f = tp

tb−→ tr. So we have FTC(B. f ) = (α
γ−→ β,C f ). Since αxs are fresh, we

can safely get dom(θ0) ] dom(θ f ). Therefore, θ0 ∪ θ f � C f and (α
γ−→ β)(θ0 ∪ θ f ) = tp

tb−→ tr.
By (1) on e, there exist s′e,Ce such that ΓG

0 ; Γ0; Λ; A `cg e : s′e  Ce, θ0 � Ce, and s′e(θ0) = se.
From the construction of θ f (i.e., the proof of (2) and (3)), the type variables in dom(θ f ) are
collected from the types of functions and local variables, which are fresh. So we also have θ0∪θ f �
Ce, s′e(θ0 ∪ θ f ) = se, Γ0(θ0 ∪ θ f ) = Γ and ΓG

0 (θ0 ∪ θ f ) = ΓG.
By Rule (TG-CALL), we have

ΓG
0 ; Γ0; Λ; A `cg x := call B. f (e) : Γ0(x) u πΘ(A)(γ) C

where C′ = {(Λ, s′e 6 πΘ(A)(α)), (Λ, πΘ(A)(β) 6 Γ0(x))} and C = C f ∪
⋃

Ce∪C′. Since dom(θ f )
are fresh, we have

s′e(θ0 ∪ θ f ) = se 6Λ πΘ(A)(tp) = πΘ(A)(α(θ0 ∪ θ f ))
πΘ(A)(β(θ0 ∪ θ f )) = πΘ(A)(tr) 6Λ Γ(x) = Γ0(θ0 ∪ θ f )(x)

So (θ0 ∪ θ f ) � C′, and thus (θ0 ∪ θ f ) � C. Thus the result follows.
TT-CP In this case we have c ∼= test(p) c1 else c2 and the following derivation

ΓG; Γ; Λ :: ⊕p; A `tr c1 : t1 ΓG; Γ; Λ :: 	p; A `tr c2 : t2
ΓG; Γ; Λ; A `tr test(p) c1 else c2 : t1 .p t2

By induction on ci, we have

∃C1, s1, θ1. ΓG
0 ; Γ0; Λ :: ⊕p; A `cg c1 : s1  C1, θ0 ∪ θ1 � C1, dom(θ0)]dom(θ1) and s1(θ0 ∪ θ1) = t1

∃C2, s2, θ2. ΓG
0 ; Γ0; Λ :: 	p; A `cg c2 : s2  C2, θ0 ∪ θ2 � C2, dom(θ0)]dom(θ2) and s2(θ0 ∪ θ2) = t2

By Rule (TG-CP), we get

ΓG
0 ; Γ0; Λ; A `cg test(p) c1 else c2 : s1 .p s2  C1 ∪C2
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From the construction of θ1 and θ2 (i.e., the proof of (2) and (3)), the type variables in dom(θ1) and
dom(θ2) are collected from the types of functions and local variables, which are fresh. Moreover,
if θ1 ∩ θ2 6= ∅, that is, they share some functions, then θ1(αx) = θ2(αx) for all αx ∈ dom(θ1) ∩
dom(θ2). So we can safely get (θ0 ∪ θ1 ∪ θ2) � Ci and si(θ0 ∪ θ1 ∪ θ2) = ti, Γ0(θ0 ∪ θ1 ∪ θ2) = Γ,
and ΓG

0 (θ0∪θ1∪θ2) = ΓG. Therefore, (θ0∪θ1∪θ2) � C1∪C2 and (s1 .p s2)(θ0∪θ1∪θ2) = t1 .p t2.
others By induction.

The proof of (c):

ΓG; [x : tp, r : tr]; ε; B `tr c : s tb 6 s

ΓG `tr B. f (x)
{

init r = 0 in {c; return r}
}

: tp
tb−→ tr

Let Γ0 = {x 7→ α, r 7→ β}, ΓG
0 = {x 7→ αx | x ∈ dom(ΓG)} and θ0 = {α 7→ tp, β 7→ tr, γ 7→ tb}∪{αx 7→

ΓG(x) | x ∈ dom(ΓG)}, where α, β, γ, αx are fresh. By (2) on c, we have

∃t,C f , θ. ΓG
0 ; Γ0; ε; B `cg c : t C f , (θ0 ∪ θ) � C f , dom(θ0) ] dom(θ) and t(θ0 ∪ θ) = s.

By Rule (TG-FUN), we have

ΓG
0 `cg B. f (x)

{
init r = 0 in {c; return r}

}
: α

γ−→ β C f

Finally, it is clear that (α
γ−→ β)(θ0 ∪ θ) = tp

tb−→ tr. �

Proof for Lemma 3.12:

Proof. By case analysis.
CD-CUP, CD-CAP Trivial.
CD-LAPP, CD-RAPP By definition of projection.
CD-SVAR, CD-SUB0, CD-SUB1 Trivial.
CD-MERGE0, CD-MERGE1 By Lemma 3.7.
CS-LU It is clear that C ∪ C′ � C. For the other direction, we only need to prove {((Λl, tl) 6

(Λ1, α)), ((Λ2, α) 6 (Λr, tr))} � {((Λl :: dif (Λ1 :: Λ2, Λ1), tl) 6 (Λr :: dif (Λ1 :: Λ2, Λ2), tr))}
if ∆(Λ1 :: Λ2). Assume that θ � {((Λl, tl) 6 (Λ1, α)), ((Λ2, α) 6 (Λr, tr))}, that is,

(tlθ) · Λl 6 θ(α) · Λ1 θ(α) · Λ2 6 (trθ) · Λr

Since ∆(Λ1 :: Λ2), by Lemmas 3.1 and 3.2, we have

(tlθ)·(Λl :: dif (Λ1 :: Λ2, Λ1)) 6 θ(α)·(Λ1 :: Λ2) θ(α)·Λ1 :: Λ2 6 (trθ)·(Λr :: dif (Λ1 :: Λ2, Λ2))

which deduces

(tlθ) · (Λl :: dif (Λ1 :: Λ2, Λ1)) 6 (trθ) · (Λr :: dif (Λ1 :: Λ2, Λ2))

that is, θ � {((Λl :: dif (Λ1 :: Λ2, Λ1), tl) 6 (Λr :: dif (Λ1 :: Λ2, Λ2), tr))}.
�
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Before proving our unification is sound and complete, we show the toType is correct.
Lemma B.3 Consider a type variable α with CL

α = {((Λl
i, t

l
i) 6 (Λi, α))}i∈I and CU

α = {((Λ j, α) 6
(Λr

j, t
r
j))} j∈J . Let tα be the type constructed from toType(CL

α,C
U
α ) if α is local or toTypeG(CL

α,C
U
α )

otherwise.

(a) {α 7→ tα} � CL
α ∪CU

α .
(b) If θ � CL

α ∪CU
α , then there exists θ′ such that dom(θ′)]dom(θ) and (θ ∪ θ′)(α) = tα(θ ∪ θ′).

Proof. The proof of (a): Let us consider any lower bound ((Λl
i, t

l
i) 6 (Λi, α)) and any permission set P:

(tα · Λi)(P) = tα(P · Λi)
= {P 7→ (

⊔
(i,P′)∈S P

I
(tl

i · Λl
i)(P′) t α′(P)) u

d
( j,P′)∈S P

J
(tr

j · Λr
j)(P′) | P ⊆ P}(P · Λi)

= (
⊔

(i,P′)∈S
P·Λi
I

(tl
i · Λl

i)(P′) t α′(P · Λi)) u
d

( j,P′)∈S
P·Λi
J

(tr
j · Λr

j)(P′)

>
⊔

(i,P′)∈S
P·Λi
I

(tl
i · Λl

i)(P′)

> (tl
i · Λl

i)(P) (as (i, P) ∈ S P·Λi
I )

So {α 7→ tα} � CL
α. Similar to {α 7→ tα} � CU

α .
The proof of (b): Let θ0 = {α′ 7→ θ(α)}, where α′ is a fresh variable introduced by toType. Clearly,

we have dom(θ0)]dom(θ). Since θ � CL
α ∪ CU

α , we have (tl
iθ) · Λl

i 6 θ(α) · Λi and θ(α) · Λ j 6 (tr
jθ) · Λr

j

for all i ∈ I and j ∈ J. So we have ((tl
iθ) · Λl

i)(P) 6 (θ(α) · Λi)(P) and (θ(α) · Λ j)(P) 6 ((tr
jθ) · Λr

j)(P)

for any permission set P. In other words, for any permission set P, we have ((tl
iθ) ·Λl

i)(P′) 6 θ(α)(P) if
P′ · Λi = P and θ(α)(P) 6 ((tr

jθ) · Λr
j)(P′) if P′ · Λ j = P. Moreover,

tα(θ ∪ θ0)(P) = {P 7→ (
⊔

(i,P′)∈S P
I
(tl

i · Λl
i)(P′) t α′(P)) u

d
( j,P′)∈S P

J
(tr

j · Λr
j)(P′) | P ⊆ P}(θ ∪ θ0)(P)

= (
⊔

(i,P′)∈S P
I
(tl

i(θ ∪ θ0) · Λl
i)(P′) t ((θ ∪ θ0)(α′))(P)) u

d
( j,P′)∈S P

J
(tr

j(θ ∪ θ0) · Λr
j)(P′)

= (
⊔

(i,P′)∈S P
I
(tl

iθ · Λl
i)(P′) t θ(α)(P)) u

d
( j,P′)∈S P

J
(tr

jθ · Λr
j)(P′)

= θ(α)(P) u
d

( j,P′)∈S P
J
(tr

jθ · Λr
j)(P′) (as (tl

iθ · Λl
i)(P′) 6 θ(α)(P) for (i, P′) ∈ S P

I )

= θ(α)(P) (as θ(α)(P) 6 ((tr
jθ) · Λr

j)(P′) for ( j, P′) ∈ S P
J )

= (θ ∪ θ0)(α) · Λ

Otherwise, α is global. The proof is similar to the case above and based on the fact that the types for
global variables are invariance for all permission sets. �

Proof for Lemma 3.13:

Proof. By induction on |C|.
|C| = 0 Trivial.
|C| > 0 In this case we have C = {((Λl

i, t
l
i) 6 (Λi, α))}i∈I ∪ {((Λ j, α) 6 (Λr

j, t
r
j))} j∈J ∪ C′, where

O(α) is the greatest. Let tα be the type constructed from the constraints on α (denoted as Cα) and
C′′ be the constraint set obtained by replacing in C′ every occurrence of α by tα. Assume assume
uni f y(C′′) = θ′. Thus θ = θ′ ∪ {α 7→ tα}. First, by Lemma B.3, we have {α 7→ tα} � Cα, and
thus θ � Cα. Next, by induction, we have θ′ � C′′. Let’s consider the constraints {((Λl

i, s
l
i) 6



Z. Xu, et al. / A Permission-Dependent Type System for Secure Information Flow Analysis 65

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(Λi, β))}i∈I ∪{((Λ j, β) 6 (Λr
j, s

r
j))} j∈J ⊆ C′ of any other variable β. Then we have {((Λl

i, s
l
i{α 7→

tα}) 6 (Λi, β))}i∈I ∪ {((Λ j, β) 6 (Λr
j, s

r
j{α 7→ tα}))} j∈J ⊆ C′′.

θ(β) · Λi = θ′(β) · Λi (Apply θ)
> ((sl

i{α 7→ tα})θ′) · Λl
i (θ′ � C′′)

= (sl
i(θ
′ ∪ {α 7→ tα})) · Λl

i

and

θ(β) · Λ j = θ′(β) · Λ j (Apply θ)
6 ((sr

j{α 7→ tα})θ′) · Λr
j (θ′ � C′′)

= (sr
j(θ
′ ∪ {α 7→ tα})) · Λr

j

Therefore, the result follows.
�

Proof for Lemma 3.14:

Proof. We prove that the statement θ = θ′θ, which deduces the result. The statement holds trivially
when |C| = 0.
When |C| > 0, we have C = {((Λl

i, t
l
i) 6 (Λi, α))}i∈I ∪ {((Λ j, α) 6 (Λr

j, t
r
j))} j∈J ∪ C′, where O(α)

is the greatest. Let tα be the type constructed from the constraints on α (denoted as Cα) and C0 be the
constraint set obtained by replacing in C′ every occurrence of α by tα. Since θ � C, we have θ � C′ and
θ � Cα, and thus θ � C0. By induction on C0, there exists θ′0 such that uni f y(C0) = θ′0 and θ = θ′0θ.
According to the function uni f y, we get uni f y(C) = θ′0 ∪ {α 7→ tα} = θ′. For any β /∈ dom(θ′), clearly
β(θ′θ) = βθ. Considering α, since θ � Cα, by Lemma B.3, we have αθ = tαθ, and thus αθ = α(θ′θ).
While for any other variable β ∈ dom(θ′), we have β(θ′θ) = β((θ′0 ∪ {α 7→ tα})θ) = β(θ′0θ) = βθ. �

Appendix C. Proofs for Representation

Proof for Lemma 4.1:

Proof. Straightforward from Definition 4.4. �

Proof for Lemma 4.2:

Proof. For the proof of (1), according to Lemma 4.1, we have

R(t ↑p)(P) = t ↑p (P) = t(P ∪ {p}) = R(t)(P ∪ {p}).

Similar to the proof of (2). �

Proof for Lemma 4.3:

Proof. Similar to Lemma 4.2 �
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Proof for Lemma 4.4:

Proof. Similar to Lemma 4.2 �

Proof for Lemma 4.5:

Proof. Straightforward From Lemma 4.3. �

Proof for Lemma 4.6:

Proof. For the proof of (a), we first prove the statement: for any type presentation r, any permission
p, and any permission set P, PROMOTION-RECURSE(r, p)(P) = r(P ∪ {p}). The proof proceeds by
induction on r.
r is sink In this case, PROMOTION-RECURSE(r, p) = r and r(P) = r(P ∪ {p}) = r.val. So the result

holds.
r.v = INDEX(p) In this case, PROMOTION-RECURSE(r, p) = (r.v, r.h, r.h) and r.h.v > INDEX(p).

Then no matter p ∈ P or not, we have

PROMOTION-RECURSE(r, p)(P) = r.h(P)
= r.h(P ∪ {p}) (p not affect the output)
= r(P ∪ {p})

r.v > INDEX(p) In this case, PROMOTION-RECURSE(r, p) = r and p does not affect the output. There-
fore, PROMOTION(r, p)(P) = r(P) = r(P ∪ {p}).

r.v < INDEX(p) In this case, PROMOTION-RECURSE(r, p) = (r.v, l, h), where l = PROMOTION-RECURSE(r.l, p)
and h = PROMOTION-RECURSE(r.h, p). Assume P[r.v] = 0, then we have

PROMOTION-RECURSE(r, p)(P) = PROMOTION-RECURSE(r.l, p)(P) (P[r.v] = 0)
= r.l(P ∪ {p}) (by induction on r.l)
= r(P ∪ {p}) ((P ∪ {p})[r.v] = 0)

Similar for P[r.v] = 1, the result holds as well.
From existing work on BDD [20, 21], we can get the procedure REDUCE( ) is correct. Considering any
permission set P, we have

PROMOTION(R(t), p)(P) = REDUCE(PROMOTION-RECURSE(R(t), p))(P)
= PROMOTION-RECURSE(R(t), p)(P)
=R(t)(P ∪ {p})
=R(t ↑p) (Lemma 4.2)

Similar to the proof of (b). �

Proof for Lemma 4.7:

Proof. we first prove the statement: given two type presentations r1, r2, a permission p, and a permission
set P, if p ∈ P, then MERGE-RECURSE(r1, r2, p)(P) = r1(P). The proof proceeds by induction on r1

and r2.
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r1, r2 are sink In this case, MERGE-RECURSE(r1, r2, p) = (p, r2, r1). As p ∈ P, we have
(p, r2, r1)(P) = r1(P). So the result holds.

r1 is sink or r1.v > r2.v There are three subcases.
Subcase (1) where r2.v > INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (p, r2, r1). Similar
to the first case.
Subcase (2) where r2.v = INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r2.v, r2.l, r1).
Similar to the first case.
Subcase (3) where r2.v < INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r2.v, l, h), where
l = MERGE-RECURSE(r1, r2.l, p) and h = MERGE-RECURSE(r1, r2.h, p). By induction on r1

and r2.h, we have h(P) = r1(P). Therefore, (r2.v, l, h)(P) = h(P) = r1(P). So the result holds.
r2 is sink or r1.v < r2.v There are three subcases.

Subcase (1) where r1.v > INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (p, r2, r1). Similar
to the first case.
Subcase (2) where r1.v = INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r1.v, r2, r1.h). As
p ∈ P, namely, P[r1.v] = 1, we have (r1.v, r2, r1.h)(P) = r1.h(P) = r1(P).
Subcase (3) where r1.v < INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r1.v, l, h), where
l = MERGE-RECURSE(r1.l, r2, p) and h = MERGE-RECURSE(r1.h, r2, p). By induction on r1.h
and r2, we have h(P) = r1.h(P). Moreover, as p ∈ P, that is, P[r1.v] = 1, we have (r1.v, l, h)(P) =
h(P) = r1.h(P) = r1(P).

r1.v = r2.v There are three subcases.
Subcase (1) where r1.v > INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (p, r2, r1). Similar
to the first case.
Subcase (2) where r1.v = INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r1.v, r2.l, r1.h).
Similar to Subcase (2) of the third case.
Subcase (3) where r1.v < INDEX(p): we have MERGE-RECURSE(r1, r2, p) = (r1.v, l, h), where
l = MERGE-RECURSE(r1.l, r2.l, p) and h = MERGE-RECURSE(r1.h, r2.h, p). Similar to Subcase
(3) of the third case.

From existing work on BDD [20, 21], we can get the procedure REDUCE( ) is correct. Considering any
permission set P such that p ∈ P, we have

MERGE(R(t1),R(t2), p)(P) = REDUCE(MERGE-RECURSE(R(t1),R(t2), p))(P)
= MERGE-RECURSE(R(t1),R(t2), p)(P)
=R(t1)(P)
=R(t1 .p t2)(P) (Lemma 4.4)

Likewise, we can get MERGE(R(t1),R(t2), p)(P) = R(t1 .p t2)(P) if p /∈ P. Therefore, the result
follows. �
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