
MemLock: Memory Usage Guided Fuzzing
Cheng Wen

CSSE, Shenzhen University
Shenzhen, China

Haijun Wang∗
Ant Financial Services Group, China
CSSE, Shenzhen University, China

Yuekang Li
Nanyang Technological University

Singapore

Shengchao Qin∗
SCEDT, Teesside University

Tees Vally, UK

Yang Liu
Nanyang Technological University

Singapore

Zhiwu Xu
CSSE, Shenzhen University

Shenzhen, China

Hongxu Chen, Xiaofei Xie
Nanyang Technological University

Singapore

Geguang Pu
East China Normal University

Shanghai, China

Ting Liu
Xi’an Jiaotong University

Xi’an, China

ABSTRACT

Uncontrolled memory consumption is a kind of critical software
security weaknesses. It can also become a security-critical vulner-
ability when attackers can take control of the input to consume
a large amount of memory and launch a Denial-of-Service attack.
However, detecting such vulnerability is challenging, as the state-
of-the-art fuzzing techniques focus on the code coverage but not
memory consumption. To this end, we propose a memory usage
guided fuzzing technique, named MemLock, to generate the exces-
sive memory consumption inputs and trigger uncontrolled memory
consumption bugs. The fuzzing process is guided with memory
consumption information so that our approach is general and does
not require any domain knowledge. We perform a thorough evalu-
ation forMemLock on 14 widely-used real-world programs. Our
experiment results show that MemLock substantially outperforms
the state-of-the-art fuzzing techniques, including AFL, AFLfast,
PerfFuzz, FairFuzz, Angora and QSYM, in discovering memory
consumption bugs. During the experiments, we discovered many
previously unknown memory consumption bugs and received 15
new CVEs.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Fuzz Testing, Software Vulnerability, Memory Consumption

ACM Reference Format:

Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu
Xu, Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. 2020. MemLock:
Memory Usage Guided Fuzzing. In 42nd International Conference on Software

∗Corresponding authors: Shengchao Qin and Haijun Wang

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00
https://doi.org/10.1145/3377811.3380396

Engineering (ICSE ’20), May 23–29, 2020, Seoul, Republic of Korea. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3377811.3380396

1 INTRODUCTION

Time and space complexities are two main concerns in software
design and development. If they are not implemented well, unex-
pected behaviors and even troublesome security issues can happen.
In real-world programs, lots of such security vulnerabilities have
been found (e.g., [17–23, 74]). For example, if the termination con-
ditions of recursive functions are not implemented correctly, an
infinite number of recursive function calls can occur and thus ren-
der the stack memory exhausted. The adversaries can exploit this
vulnerability to launch a Denial-of-Service (DoS) attack with some
well-crafted inputs [18, 21]. Recently, researchers have started to
pay attention to these issues. For example, SlowFuzz [58], Perf-
Fuzz [37] and ReScue [63] are developed to generate pathological
inputs to stress the time complexity issues (i.e., algorithmic com-
plexity vulnerabilities). However, it still leaves untouched for auto-
matically generating pathological inputs to stress space complexity
issues (namely memory consumption bugs) thus far.

Although a number of works (e.g., the popular fuzzing tech-
niques [11, 28, 45, 61, 84]) have devoted to detecting memory issues,
they mostly focus on memory corruption vulnerabilities such as
buffer overflow and use-after-free. Memory corruption occurs in a
programwhen the contents of thememory aremodified due to some
unexpected program behavior that exceeds the original intention
of the program [65, 67, 72]. When the corrupted memory contents
are used later by the program, it may lead to unexpected behav-
iors (e.g., program crash). However, memory consumption bugs are
essentially different from memory corruption vulnerabilities. As de-
fined by CWE-400 [49], the software does not properly control the
allocation and maintenance of a limited resource thereby enabling
an actor to influence the amount of resources consumed, eventually
leading to the exhaustion of available resources. To make it explicit,
this paper focuses on three types of memory consumption bugs:
uncontrolled-recursion [52], uncontrolled-memory-allocation [51],
and memory leak [50]. Uncontrolled-recursion may exhaust stack
memory when the program does not properly control the amount of
recursion that takes place. Uncontrolled-memory-allocation refers
to the situation whereby the program allocates memory based on an
untrusted size value, but it does not validate or incorrectly validates

1

https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3377811.3380396

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

1 struct demangle_component *

2 cplus_demangle_type (struct d_info *di) {

3

4 // "peek" is a single character extracted from the input directly

5 char peek = d_peek_char (di);

6

7 switch (peek){

8 ...

9 case 'P':

10 ret = d_make_comp (di,

11 DEMANGLE_COMPONENT_POINTER,

12 cplus_demangle_type (di), NULL);

13 break;

14 case 'C':

15 ...

16 }

17 ...

18 }

Figure 1: Code Snippet from cp-demangle.c in Binutils v2.31

1 class EXIV2API DataBuf {

2 public:

3 // Constructor with an initial buffer size

4 explicit DataBuf(long size): pData(new byte[size]), size(size) {}

5 ...

6 byte* pData; // Pointer to the buffer

7 size_t size; // The current size of the buffer

8 };

9

10 void Jp2Image::readMetadata() {

11 while (io_->read((byte*)&subBox, sizeof(subBox)) ==

sizeof(subBox) && subBox.length) {↪→
12 subBox.length = getLong((byte*)&subBox.length, bigEndian);

13 DataBuf data(subBox.length); // Allocation without checking

14 ...

15 io_->seek(position - sizeof(box) + box.length, BasicIo::beg);

16 }

17 }

Figure 2: Code Snippet from jp2image.cpp in Exiv2 v0.26

the size, allowing arbitrary amounts of memory to be consumed.
Moreover, if the software does not track and release allocated mem-
ory after it has been used, it causes a memory leak.

Existing detection techniques for memory consumption bugs
usually use domain- or implementation-specific heuristics or rules
[15, 24, 46, 70, 79]. For example, Radmin [24] learns and executes
multiple probabilistic finite automata, and then confines the re-
source usage of target programs to the learned automata and de-
tects resource usage anomalies at their early stages. Thus, their
effectiveness heavily depends on the completeness of heuristics
and rules. To create and maintain such rules requires substantial
manual efforts and expertise. In this paper, we employ the grey-
box fuzzing [84] technique to develop an automated and general
technique to detect memory consumption bugs.

Grey-box fuzzing is one of the most effective techniques to find
vulnerabilities [39, 41], which typically adopts the coverage infor-
mation as guidance to explore different program paths. However,
existing grey-box fuzzing techniques are not designed for detecting
memory consumption bugs, because such bugs often depend not
only on the program path but also on some interesting program
states in that path (i.e., amount of memory consumption). For ex-
ample, the real-world program in Figure 2 allocates the memory at
Line 4, however, this memory allocation may fail if no additional
memory can be allocated for use. To detect this bug, the grey-box
fuzzer needs to execute a program path that touches Line 4, as
well as a large value for variable size to exceed the available heap
memory. Existing coverage-based fuzzing techniques can easily
cover Line 4, but it may be difficult to produce test cases that have
a large value for variable size.

To address the aforementioned challenges, we presentMemLock
to enhance grey-box fuzzing to find memory consumption bugs.
MemLockworks in two steps. Firstly,MemLock performs the static
analysis, which identifies the statements and operations relevant
to memory consumption. We would qualitatively analyze the call
graph, which determines the stack memory usage, and quantita-
tively analyzememory usage operations, which determines the heap
memory usage. Besides, we also analyze the control flow graph of
the program, which provides branch coverage for guiding to explore
different program paths. With the memory consumption analyzed,

MemLock then employs branch coverage as well as memory con-
sumption information to guide the fuzzing process. The branch
coverage information guides to explore different program paths,
and the memory consumption information guides the program
path to consume more and more memory. If an input covers new
branch compared to previous inputs, it is considered as interesting
and added into the seed queue. Besides, although an input has no
new branch coverage, if it leads to more memory consumption, we
also retain it as an interesting input through a novel seed updat-
ing scheme. This input can be further mutated so that the newly
generated input leads to more memory consumption. After some
mutations,MemLock is expected to generate an input whereby the
memory consumption exceeds the available memory.

We have evaluatedMemLock’s effectiveness using a set of real-
world open source programs. The experiment results show that
MemLock substantially outperforms six state-of-the-art tools (i.e.,
AFL [84], AFLfast [8], PerfFuzz [37], FairFuzz [38], Angora [12] and
QSYM [83]), in discovering the memory consumption vulnerabil-
ities.MemLock finds 40.5% more unique crashes and 17.9% more
vulnerabilities, than the second best counterpart. In particular,Mem-
Lock can discover a certain memory consumption vulnerability at
least 2.07 times faster than the other baseline fuzzers. Besides, the
generated test cases inMemLock usually lead to 150 times memory
consumption compared to the other state-of-the-art tools. In addi-
tion, we have responsibly disclosed several previously unknown
memory consumption bugs, and received 15 new CVE1 for them,
demonstrating MemLock’s effectiveness in practice.

In summary, this paper makes the following contributions:
• We present MemLock, the first, to the best of our knowledge,
dedicated fuzzing technique to automatically discover memory
consumption bugs without requiring any domain knowledge.
• We design a new dimension of guidance engine to deeply exploit
the memory consumption in a program path, which is comple-
mentary to the coverage guidance.
• Wehave implemented and evaluatedMemLock on variouswidely-
used real-world programs. The experimental results have shown
that MemLock substantially outperforms five state-of-the-art
fuzzing techniques in discovering memory consumption bugs.

1The Common Vulnerabilities and Exposures (CVE) system provides a reference for
tracking publicly known information-security vulnerabilities and exposures.

2

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

• We have discovered 15 security-critical memory consumption
vulnerabilities in widely-used real-world programs, and most of
these vulnerabilities have been patched by the developers.

2 OVERVIEW

2.1 Motivating Examples

We first illustrate the limitations of existing coverage-based grey-
box fuzzing techniques for detecting memory consumption bugs
with two examples summarized from real-world vulnerabilities. We
use the vulnerability CVE-2018-17985 [18] in Figure 1 to demon-
strate an uncontrolled-recursion bug and CVE-2018-4868 [19] in
Figure 2 to demonstrate an uncontrolled-memory-allocation bug.

In Figure 1, the function cplus_demangle_type recursively calls
itself in line 12 when the input contains the character ‘P’. The depth
of recursion depends on the number of character ‘P’s in the input.
With a sufficiently large recursive depth, the execution would run
out of stack memory, causing stack overflow. To trigger a stack
overflow, the fuzzer would need to generate inputs containing a
large number of character ‘P’s.

However, existing coverage-based grey-box fuzzers do not have
enough awareness about the change in recursive depth and solely
use coverage information to retain interesting inputs. Take AFL as
an example, it is aware of repeatedly executed CFG edges [71] but
only in a coarse manner. To be specific, AFL adopts the concept
of “loop bucket” to retain interesting inputs (see Section 3.1). The
loop bucket cannot tell the fine-grained change in recursive depth.
Specially, it does not differentiate the change when the recursive
depth is greater than 255. Nevertheless, this number is still very
far from causing stack exhaustion, which normally requires tens of
thousands of recursive depth.

Therefore, to expose uncontrolled-recursion effectively, grey-box
fuzzers need to have precise awareness about the stack memory
consumption of the target program when executing an input.

Figure 2 demonstrates an uncontrolled-memory-allocation prob-
lem in exiv2. At line 11-12, when the program parses a subBox in
readMetadata(), a length is extracted from the user inputs. Then
the length is fed directly into DataBuf() at line 13. Finally, this
value is used as the size of a memory allocation request at line 4.
Note that the program does not check the size before allocating
memory. By carefully handcrafting the input, an adversary can
provide arbitrarily large values for subBox.length, leading to pro-
gram crash (i.e., std::bad_alloc) or running out of memory. To
trigger this problem, the fuzzer would need to generate inputs with
a large subBox.length. For this purpose, the fuzzer needs to col-
lect information about the value of subBox.length to retain the
interesting inputs that can incur a large memory consumption.

However, existing coverage-based grey-box fuzzers lack aware-
ness about the value of subBox.length. Therefore, they cannot ef-
fectively generate inputs causing subBox.length to become larger.
Take AFL as an example, let us assume AFL now holds a seed
input a which incurs the subBox.length of 100 and causes the
function to enter the while at line 11 and eventually return at
line 16. After some mutations, AFL may generate another input
b which incurs the subBox.length of 10000 and also causes the
function to enter the while at line 11 and return at line 16. We can

Source
Code Static Analysis

Control Flow
Graph

Call Graph

Memory Usage
Operations

Instrumentation
Instrumented

Program

Initial
Seeds

Seed Pool

Seed Selector Selected Seed Seed Mutator

Test Inputs Executor

Feedback
Collector

Branch
Coverage

Memory
Consumption

Seed Updater
Proof of
Crashes

Static Analysis

Fuzzing Loop

Figure 3: The overview of the proposed approach; grey rect-

angles denote the new features of MemLock.

clearly see that comparing with a, b consumes much more mem-
ory and is closer to running out of memory. However, AFL will
discard input b and will not retain it as a seed because b does not
bring new branch coverage. Consequently, AFL cannot detect this
uncontrolled-memory-allocation problem effectively.

Therefore, to expose uncontrolled-memory-allocation effectively,
grey-box fuzzers also need to have precise awareness about the
amount of consumed heap memory of the target program when
executing an input.

2.2 Approach Overview

Figure 3 shows the workflow of MemLock, which contains two
main components: static analysis and fuzzing loop. In particular,
the static analysis takes the program source code as the input, and
generates three kinds of information (see Section 3.1): control flow
graph, call graph, and memory usage operations. The static analysis
in MemLock helps to decide where to instrument and what to in-

strument. The control flow graph information is used to collect the
branch coverage; the call graph information aids to instrument the
function call entries and returns. Based on the memory usage oper-
ation statements,MemLock instruments the locations of memory
allocation and free operations.

Once the program is instrumented, MemLock enters the con-
tinuous fuzzing loop to detect memory consumption bugs (see
Section 3.2). Given the initial seeds,MemLock selects a seed s from
the seed pool. As for the seed s , MemLock generates the new in-
puts (test cases) using different mutation strategies.MemLock then
runs the generated inputs against the instrumented program, and
collects their memory consumption information (see Section 3.2.1)
and branch coverage information. If the generated seeds consume
more memory or have new branch coverage, they are retained as
interesting seeds. MemLock adds them into the seed pool through
a seed updating scheme (see Section 3.2.2). MemLock repeats this
process until reaching time or resource budget limits.
Example in Figure 1.We illustrateMemLock using the example in
Figure 1. Suppose the initial value of peek (obtained from function
parameter di by function d_peek_char at Line 5) is ‘a’. This value
is general, unbiased for any special case. Through the coverage
guidance,MemLock generates a new input i1 that may produce the

3

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

value ‘P’ forpeek as it covers the different branch.When i1 is further
mutated, it generates i2, which may produce four consecutive ‘P’s
for peek (i.e., “PPPP”) in its recursion. Since i2 has different branch
hits in the sense of “loop bucket” from i1 , it is added into the
seed pool. When i2 is selected for mutation, it generates i3 that
may produce five consecutive ‘P’s for peek (i.e., “PPPPP”) in its
recursion. The coverage guidance uses the concept of “loop bucket”,
and considers that i3 does not offer new branch coverage compared
to i1 and i2. In this case, existing coverage-based grey-box fuzzers
would discard i3, and thus miss the chance to generate an input that
can produce more consecutive ‘P’s. On the other hand,MemLock
introduces memory consumption as the guidance, under which i3 is
considered to causemorememory consumption (than i1 or i2). Thus,
it retains i3 as an interesting test case, and adds it into the seed pool.
It can further mutate i3, and generate inputs that may produce more
consecutive ‘P’s. After some mutations,MemLockmay generate an
input that would produce a sufficiently large number of consecutive
‘P’s (i.e., “PPP. . . ”) to run out the stack memory.
Example in Figure 2. For illustration, let us assume that the avail-
able heap memory is 10000 bytes. Suppose the initial value of
subBox.length is 100, which is produced from user input at Lines
11-12. At Line 13 in Figure 2, the memory is allocated successfully,
and the program executes the true branch of the while statement
at Line 11. Based on the coverage guidance, MemLock performs
the mutation and can generate a new input i1 that produces a
larger value for subBox.length. In this case, we assume the value
is 150. The input i1 still executes the true branch of the while
statement, and thus there is no new branch coverage. At this time,
the coverage-based grey-box fuzzers would discard i1, therefore
missing the chance to generate an input consuming more memory.
On the other hand, MemLock’s memory consumption guidance
considers that i1 consumes more memory (i.e., 150 > 100), and
keeps it as an interesting input. When i1 is further mutated,Mem-
Lock can generate an input (e.g., len = 250) that consumes more
memory. After some mutations,MemLock can generate an input
(e.g., len = 11000) that runs out of memory.

Note that we have not elaborated memory leaks separately
as MemLock deals with them in the same way as uncontrolled-
memory-allocation, using the same memory usage guidance during
fuzzing.

3 METHODOLOGY

3.1 Static Analysis

The static analysis in MemLock decides how to instrument the tar-
get program. Based on the instrumentation, MemLock collects the
guidance information, and then uses it to drive the fuzzing process.
After analyzing the control flow graph, MemLock instruments the
target program to capture branch (edge) coverage, guiding program
path explorations. Additionally, based on the qualitative and quan-
titative analysis of call graph and memory usage operations, it also
instruments the target program to collect the memory consumption
information, guiding the fuzzing process towards consuming more
memory for each program path. To facilitate the description of our
methodology, we define the following concepts.

3.1.1 Control Flow Graph. MemLock collects branch coverage
information in the control flow graph (CFG) of the program to guide
program path explorations as AFL [84]. It inserts instrumentation
into every branch of the program CFG, assigning a pseudo-unique
ID to every branch. During program execution, the instrumentation
uses an 8-bit counter to keep track of the number of times that
a branch has been executed. MemLock groups the hit counts of
each branch execution into several buckets to denote different
magnitudes2. Consequently, the branch coverage information in an
executed program path can be defined as follows.

Definition 3.1 (Trace Bits [84]). For an executed program path,

its trace bits are represented by an 8-bit array with size 2K , and the
value of the ID

th
element is stored in an 8-bit counter (In AFL,K = 16).

The trace bits record the accumulated branches executed in a
program path, and they can represent a program path roughly.

Definition 3.2 (Path-ID). For an executed program path, its

path-ID is the hash value of its trace bits (see Definition 3.1).

3.1.2 Call Graph. In addition to branch coverage, MemLock also
collects the memory consumption information. One important con-
struct that may cause a large bulk of stack memory consumption is
the recursive function call. When a function call occurs, the pro-
gram automatically allocates the stack memory for use (e.g., local
variables). On the other hand, when a function call is finished (re-
turned), the program automatically reclaims the allocated stack
memory for reuse. To monitor the stack memory consumption of
function calls, MemLock injects the instrumentation into both the
entry and the exit of the function call.

We use ft to denote the length (i.e., consumption) of call stack
during the program execution. This value changes with the execu-
tion of the program. When the program execution enters a function,
the value ft is increased by one; likewise, when a function call is
returned, the value ft is decreased by one. In the following, we use
fm to denote the peak value of ft during the program execution.
The value fm thus qualitatively reflect the maximum (stack) mem-
ory consumption by recursive function calls during the program
execution. We do not differentiate the memory consumption caused
by different functions, because usually the stack memory can be ex-
hausted only under infinite recursive function calls. Thus, we only
need the peak length of call stack to guide MemLock to approach
infinite recursive function calls.

3.1.3 Memory Usage Operations. Memory usage operation state-
ments (e.g.malloc and free) may also contribute to the consumption
of a large bulk of memory. In a program path, the memory opera-
tion statements may be affected by the program inputs. When this
happens, it is possible to guide this program path to consume more
memory by controlling the program inputs. To this end, MemLock
uses instrumentation to quantitatively obtain the size of the mem-
ory operation. Due to the lack of freed memory size in deallocation
statements,MemLock maps them to their corresponding allocation
statements to obtain the size of the freed memory.

In particular, we insert instrumentation into the memory allo-
cation/deallocation functions in the standard libraries, and obtain
2In AFL, the hit counts of each branch execution are divided into 8 buckets: 1 time, 2
times, 3 times, 4-7 times, 8-15 times, 16-31 times, 32-127 times, and 128-255 times [78].

4

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Algorithm 1: Memory Usage Guided Fuzzing

input :an instrumented program P , and set of initial seedsT
output : test cases S triggering memory consumption bugs

1 S ← Φ;
2 Queue ← T ;
3 while time and resource budget do not expire do

4 for each input t in Queue do
5 if with probability FuzzProbt to select t then
6 numChildren ← AssiдnEnerдy(t);
7 for 0 ≤ i < numChildren do

8 childi ← Mutate(t);
9 (traceBitsi , fmi , omi) ← Run(childi , P);

10 k = Hash(traceBitsi);
11 if it triggers memory consumption bugs then

12 S ← S ∪ childi ;
13 else

14 if NewCov(traceBitsi) then
15 Queue ← Queue ∪ childi ;
16 if NewMax(fmi , omi) then

17 Queue ←
Update(childi , fmMap[k], omMap[k]);

18 return S

its parameters and return value. The reason is that the memory is
allocated by some standard library functions [1, 46], e.g., malloc,
calloc, realloc, and new. On the other hand, the program may also
free the memory using the standard library function such as free
and delete. Even when the program uses a user-customized memory
usage operation function [33], it still relies on standard library func-
tions to operate a larger bulk of memory. Thus, we do not need to
consider the user-customized memory usage operations in practice.

We use ot to denote the amount ofmemory consumed bymemory
operations in a program path. When the program allocates ot′ bytes
memory, the value ot is increased by ot′; likewise, if it frees ot′ bytes
memory, the value ot is decreased by ot′. In the following, we use the
om to represent the peak value of ot during the program execution.
The value om evaluates the memory consumption in a program
path by memory usage operation statements. By using om as the
guidance, MemLock can mutate the program inputs and gradually
increase the peak value of memory consumption in a program path.

3.2 Fuzzing Loop

Algorithm 1 shows the high-level procedures of MemLock. The
intuition of the algorithm is that, for each input t in the seed pool,
MemLock decides whether to mutate it based on a selection prob-
ability. If so, MemLock mutates t and generates a set of child in-
puts. Then, MemLock runs each child input and monitors their
executions. If a child input has new coverage or consumes more
memory (see Definitions 3.3 and 3.4), it is retained as an interesting
input. While this process is similar to the process of traditional
coverage-based grey-box fuzzers (e.g., AFL), the main difference is

that MemLock additionally adopts memory consumption guidance
to retain interesting inputs.

The algorithm takes the instrumented program P (see Section 3.1)
and a set of initial seeds T as the inputs, and outputs a set of test
cases S that trigger the memory consumption bugs. The variable
Queue represents the seed pool, and is initialized as the initial seeds
T at Line 2. MemLock first selects an input t from the seed pool
Queue (Line 4), and computes its probability on whether or not to
be mutated at Line 5 (see Section 3.2.1). Upon deciding to mutate
the input t ,MemLock assigns the energy (i.e., numChildren) to it at
Line 6, which determines the number of children to produce from
t . MemLock uses the same heuristics to determine numChildren
as AFL [84]. It produces more children for inputs that have wider
code coverage or that are discovered later in the fuzzing process. At
Lines 4-17,MemLockmutates the input t to generate numChildren
children, monitors their executions, and determines their affiliations.
MemLock first performs mutation to generate the new input childi
(Line 8). At Line 9, MemLock then runs the input childi on the
instrumented program P , and collects its branch coverage (i.e.,
traceBitsi), function memory consumption (i.e., fm), and operation
memory consumption (i.e., om), respectively.

If the input childi triggers memory consumption bugs (how
to determine memory consumption bugs, see Section 4.1), it is
added into the output S (Line 12). Otherwise,MemLock analyzes
its branch coverage and memory consumption (Line 14 and 16). If it
has new branch coverage, it is added into theQueue for the further
mutation (Line 15). In addition, we further analyze its memory con-
sumption. MemLock checks whether childi leads to more memory
consumption based on fmmap[k] and ommap[k] at Line 16. (see
Section 3.2.1). If so,MemLock updates the value of fmmap[k] and
ommap[k] using the function Update at Line 17 (see Section 3.2.2).
This process is repeated until the given time or resource budget
expires (Lines 3).

3.2.1 Guidance Mechanisms. One of the most important compo-
nents in the grey-box fuzzing is its guidance mechanism (Lines 14
and 16 in Algorithm 1), which often dominates the capability of
the fuzzing technique in finding bugs [11, 37]. For example, Slow-
Fuzz [58] uses the number of executed instructions as guidance to
stress algorithmic complexity vulnerabilities. To find the memory
consumption bugs effectively,MemLock uses branch coverage as
well as memory consumption as the guidance. The branch coverage
information guidesMemLock to explore different program paths,
while the memory consumption information can driveMemLock
to focus on program paths with more memory consumption. To
facilitate the description of our memory consumption guidance, we
define the following concepts.

Definition 3.3 (Maximum Function Memory). Given a path

k and a set I of inputs that all execute k , the maximum function

memory consumption fmmap[k] in k is the maximum peak value of

call stack, among all the inputs I :

fmmap[k] ← max
i ∈I

fmi

where fmi represents the peak value of call stack during the execution

of input i (see Section 3.1.2).

5

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

Seed 1 Seed 2 Seed 3

Seed 1 Seed 2 Seed 3 Seed 4

Seed 1 Seed 2 Seed 3 Seed 4

Seed 5

Path 1 Path 2 Path 3 Path 4

Original Seed Queue

New Path

Larger Memory
Consumption

Figure 4: Dynamic Seed Updating

Definition 3.4 (Maximum Operation Memory). Given a path

k and a set I of inputs that all execute k , the maximum operation

memory consumption ommap[k] in k is the maximum peak value of

memory consumption by memory usage operations, among all the

inputs I :
ommap[k] ← max

i ∈I
omi

where omi denotes the peak value of memory consumed by memory

usage operations during the execution of input i (see Section 3.1.3).

Definition 3.5 (NewCov). Given a set I of inputs and an input

t , we say t hits a new coverage, if it either (1) executes a branch that

has not been touched by I ; or (2) hits a branch touched by I but with
a different bucket number.

The function NewCov (Line 14) will check whether a newly
generated input childi hits a new coverage with respect the current
Queue or not. That is, the function NewCov considers the branch
coverage and guides MemLock to explore different program paths.

Definition 3.6 (NewMax). Given a set I of inputs and an input t
that all executek , we say t hits a newmaximummemory consumption,

if either fmt > fmmap[k] or omt > ommap[k].

The function NewMax (Line 16) determines whether the input
childi leads to the maximum memory consumption among the cur-
rent seed set. It actually checks two kinds of memory consumption.
It first determines whether childi leads to the maximum function
memory consumption (see Definition 3.3). It also considers whether
childi leads to the maximum operation memory consumption (see
Definition 3.4). If the input childi satisfies either of the above two
cases, MemLock update the seed queue with childi at Line 17 (see
Section 3.2.2).

3.2.2 Dynamic Seed Updating. In order to efficiently support re-
taining the most interesting input for each path, we propose a
novel seed updating scheme. InMemLock, the seed queue is kept
in a linked list, where each node represents a seed that explores
a program path, as shown in Fig. 4. MemLock updates the seed
queue in the following two cases. (1) New Path. If the test input
results in new branch coverage, then it will be added to the seed
queue as a new node, as shown in the second row of Fig. 4. (2)
Larger Memory Consumption. If the input, e.g., seed2 in the third
row of Fig. 4, generates an input seed5, which does not result in
new branch coverage, but it leads to larger memory consumption
than the corresponding input. When seed2 and seed5 execute the
same path, seed2 is replaced with seed5. With replacing the original

seed with the generated input childi , we well exploit the advantage
of childi as it is better in terms of finding memory consumption
bugs. This seed updating policy ensures MemLock to gradually
improve/increase the overall memory consumption, and it could
avoid getting stuck in local maxima like SlowFuzz [37], and brings
long-term stable improvements.

To tailor for our guidance mechanism, MemLock also optimizes
the seed selection probability (Line 5 in Algorithm 1) for the muta-
tion as follows.

Definition 3.7 (Favored Input). An input t is favored for muta-

tion, if t has new branch coverage (i.e. NewCov) or t leads to maximum

memory consumption (i.e., NewMax).

Definition 3.8 (Selection Probability). An input t is selected
for mutation with the following probability:

FuzzProbt =

{
1 if t is favored
a otherwise

That is, the favored inputs are always selected, and a is the
probability of selecting a non-favored input. In our experiments we
use a = 0.01 like PerfFuzz [37].

4 EVALUATION

We have built a prototype of MemLock. Our implementation adds
around 1.6k lines of C/C++ code to the file containing AFL’s core im-
plementation. In particular, the static analysis and instrumentation
components are implemented based on the LLVM framework [36],
and the fuzzer engine is implemented based on the AFL-2.52b frame-
work [84]. We have conducted thorough experiments to evaluate
MemLock with a set of real-world programs. More detailed ex-
perimental results can be found on our website [48]. With these
experiments, we aim to answer the following research questions:
RQ1. How capable is MemLock in memory consumption crash

detection?
RQ2. How capable is MemLock in memory consumption real-

world vulnerability detection?
RQ3. Do the strategies of MemLock help to trigger memory leaks

with more leakage?
RQ4. Do the strategies of MemLock help to generate inputs with

more memory consumption?

4.1 Experiment Setup

Following the suggestions in [35], we conducted the experiments
carefully, to draw conclusions as objective as possible.
Baseline Fuzzers to Compare against. We compare MemLock
against six state-of-the-art fuzzers, namely AFL [84], AFLfast [8],
PerfFuzz [37], FairFuzz [38], Angora [12] and QSYM [83]. The base-
line fuzzers are selected based on the following considerations. AFL
is the widely-used coverage-based greybox fuzzer, and selected
as baseline fuzzer in the most work. AFLfast is an advanced vari-
ant of AFL, specially equipped with a better power schedule [8].
PerfFuzz [37] is to stress the time complexity issues in the pro-
gram, while MemLock seeks to detect space complexity issues.
FairFuzz [38] leverages a targeted mutation strategy to execute
towards rare branches. Further, Angora [12] utilizes taint analy-
sis to track information flow, and then uses gradient descent to

6

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

break through the hard branches. Lastly, QSYM [83] is a popular
symbolic execution assisted fuzzer. Note that we haven’t selected
MemFuzz [16] as baseline fuzzer, because MemFuzz is not open
source and it resorts to memory accesses (instead of memory con-
sumption). In a word, we selected various kinds of representative
state-of-the-art fuzzers as baseline fuzzers, and they are widely
used to discover vulnerabilities in practice.
Evaluation Benchmarks. We select evaluation benchmarks con-
sidering several factors, e.g., popularity, frequency of being tested,
development activeness, and functional diversity. Finally, we use
14 widely-used real-world programs, which all contain memory
consumption bugs, to evaluateMemLock, including well-known
development tools (e.g., nm, cxxfilt, readelf), code processing tools
(e.g., nasm, flex, yaml-cpp, mjs), graphics processing libraries (e.g.,
openjpeg, jasper, exiv2), video processing tools (e.g., bento4 and
libming), and data processing libraries (e.g., libsass and yara), etc.
These programs have also been widely tested by existing state-of-
the-art greybox fuzzers [28, 35, 38, 82].
PerformanceMetrics.To compare against state-of-the-art fuzzers,
the most direct measurement is the capability to find the vulnera-
bilities. With this regard, we consider both unique bugs and unique
crashes each fuzzer finds in the fuzzing process. Since MemLock is
to stress the space complexity issues of programs, we also distill
the memory consumption of each seed in the pool.
Configuration Parameters. Since the fuzzers heavily rely on the
random mutation, there could be performance jitter during fuzzing
process. We took two actions to mitigate the randomness caused by
the nature of fuzzing techniques. First, we test each program for a
longer time, until the fuzzer reaches a relatively stable state. We run
each fuzzer for 24 hours. Second, we perform each experiment for
5 times, and evaluate their statistical performance. Besides, we run
all the fuzzers with the -d option to skip the deterministic mutation
stage, following the configuration of PerfFuzz [37].
Memory Consumption Bugs. The uncontrolled-recursion bug
usually causes stack-overflow, thus we can directly use Address-
Sanitizer [62] to detect it. The uncontrolled-memory-allocation bug
consumes a large amount of memory so that the program runs
out of the memory. Thus, we can detect it by setting the “alloca-
tor_may_return_null” [29] flag of AddressSanitizer. In addition, we
use LeakSanitizer [60] to detect memory leakage.
Experiment Infrastructure. All our experiments have been per-
formed onmachines with an Intel (R) Xeon (R) E5-1650 v3 Processor
(3.40GHz) and 16GB of RAM under 64-bit Ubuntu LTS 16.04.

4.2 Unique Crashes Evaluation (RQ1)

To evaluate the effectiveness of fuzzers, a direct measurement is
the number of unique crashes found by different fuzzers. It is be-
lieved that more unique crashes usually indicate higher chances of
covering more unique vulnerabilities.

Table 1 shows the number of unique crashes, which is caused by
memory consumption vulnerabilities, found by 7 different fuzzers
within 24 hours in the benchmark programs. It is worth noting, we
identify unique crashes related to memory consumption bugs by
reproducing the crashes and analyzing their crash stacks. And we
discuss other types of crashes in Section 4.6. Out of the 17 groups of

experiments,MemLock performs best in 10 (58.8%) groups of exper-
iments among 7 different fuzzers, as shown in columnMemLock. In
total,MemLock finds 2009 unique memory consumption crashes in
the benchmark programs, improving by 59.2%, 70.5%, 76.9%, 98.1%,
40.5% and 66.7% respectively, compared to state-of-the-art fuzzers
AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM. Especially,
MemLock is able to find unique crashes in all benchmark programs,
while other 6 state-of-the-art fuzzers may find no crashes in some
benchmark programs. For example, none of the other 6 state-of-
the-art fuzzers could find any unique crashes in the program flex,
butMemLock was able to find 61 unique crashes within 24 hours.
To better compare different fuzzers, we also use the plots to de-
pict the performance over time in some benchmark programs, as
shown in Figure 5. It shows that MemLock has a steady and strong
growth trend in finding unique crashes, andMemLock is also the
first fuzzer that reported crashes.

Following Klees’ recommendation [35], we also conduct the
statistic test for the results. The Â12 [68] statistic measures the
probability that one fuzzer (in this case MemLock) outperforms
another fuzzer. The value of Â12 means by what chance the result of
MemLock is better than the competitor, as shown in columns with
the heading Â12. Further, we apply the Mann-Whitney U -test [2]
with a significance level of 0.05 to check the statistical significance
differences of experimental results. A smaller statistical significance
difference (a.k.a p-value) indicates a more significant difference
between MemLock and the competitor. In Table 1, we mark the
corresponding Â12 values in bold for those with a p-value smaller
than the significance level (0.05) (for simplicity, we do not include
p-values here but they are available at the companion website [48]).
Out of 102 Â12 values in the table, 72 (70.6%) Â12 values exceed the
conventionally large effect size (0.71) and are marked in bold. Thus,
we can conclude that MemLock significantly outperforms other 6
state-of-the-art fuzzers in most benchmark programs.

From the analysis of Table 1 and Figure 5, we can positively an-
swer RQ1 that MemLock significantly outperforms the start-
of-the-art fuzzers in terms of memory consumption crashes
detection.

4.3 Real-world Vulnerability Evaluation (RQ2)

In this section, we compare the capability of MemLock to find real-
world known vulnerabilities against baseline fuzzers, as suggested
by Klees [35].

Table 2 shows the statistic results inMemLock as well as other 6
different state-of-the-art fuzzers. The benchmark programs totally
contain 34 unique vulnerabilities, out of whichMemLock performs
best in the 25 vulnerabilities among other 6 state-of-the-art fuzzers,
as shown in column MemLock. MemLock averagely takes about
5.4 hours to find each unique vulnerability, which is 2.15, 2.15,
2.20, 2.69, 3.76, 2.07 times faster than the state-of-the-art fuzzers
AFL, AFlfast, PerfFuzz, FairFuzz, Angora and QSYM respectively. In
particular,MemLock finds 33 out of 34 unique vulnerabilities within
24 hours, while other fuzzers AFL, AFLfast, PerfFuzz, FairFuzz,
Angora and QSYM only find 26, 28, 20, 17, 6 and 25, respectively.
The three unique vulnerabilities (i.e., issue#106, CVE-2018-18701
and CVE-2019-6293) in mjs, nm and flex can be found only by

7

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

Table 1: Unique Crashes Evaluation

MemLock AFL AFLfast PerfFuzz FairFuzz Angora QSYM

Program Version SLoC Type

#Crashes #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12
mjs [53] 1.20.1 40k UR 114 36 1.00 31 1.00 88 0.96 12 1.00 0 1.00 30 1.00

cxxfilt [5] 2.31 1,757k UR 448 373 1.00 304 1.00 401 0.88 39 1.00 0 1.00 327 1.00

nm [5] 2.31 1,757k UR 127 12 1.00 21 1.00 17 1.00 0 1.00 0 1.00 20 1.00

nasm [54] 2.14.03 105k UR 132 6 1.00 4 1.00 40 1.00 0 1.00 0 1.00 4 1.00

flex [27] 2.6.4 27k UR 61 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00

yaml-cpp [80] 0.6.2 58k UR 4 0 1.00 1 1.00 3 0.56 0 1.00 0 1.00 0 1.00

libsass [43] 3.5.4 27k UR 23 6 1.00 4 1.00 23 0.53 11 0.88 26 0.25 7 1.00

yara [81] 3.5.0 45k UR 156 34 1.00 33 1.00 65 0.94 13 1.00 0 1.00 31 1.00

readelf [5] 2.28 1,844k UA 273 104 1.00 110 1.00 54 1.00 181 0.88 0 1.00 114 1.00

exiv2 [25] 0.26 84k UA 10 11 0.14 11 0.20 6 0.90 15 0.00 13 0.16 8 0.52
openjpeg [55] 2.3.0 243k UA 16 8 0.80 5 1.00 0 1.00 7 0.46 0 1.00 5 0.80

UA 5 2 1.00 2 0.98 2 1.00 1 1.00 189 0.00 1 1.00bento4 [4] 1.5.1 78k
ML 145 78 1.00 72 1.00 61 1.00 125 1.00 290 0.00 74 1.00

UA 18 20 0.40 18 0.60 17 0.62 20 0.20 3 1.00 16 0.80libming [42] 0.4.8 92k
ML 264 336 0.20 324 0.00 324 0.00 371 0.00 87 1.00 354 0.00

UA 3 2 0.84 3 0.56 0 1.00 3 0.56 2 1.00 2 0.92jasper [32] 2.0.14 44k
ML 210 234 0.08 235 0.08 35 1.00 216 0.40 820 0.00 212 0.46

Total Unique Crashes (Improvement) 2009 1262 (+59.2%) 1178 (+70.5%) 1136 (+76.9%) 1014 (+98.1%) 1430 (+40.5%) 1205 (+66.7%)

* UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug, and ML means the memory leak. We highlight the Â12 values in the bold if its
corresponding Mann-Whitney U test is significant.

0 5 10 15 20
time (hour)

0
20
40
60
80

100
120
140
160
180

Nu
m

be
r o

f U
ni

qu
e

Cr
as

he
s

nasm
QSYM
PerfFuzz
MemLock
FairFuzz

Angora
AFLfast
AFL

0 5 10 15 20
time (hour)

0
20
40
60
80

100
120
140

Nu
m

be
r o

f U
ni

qu
e

Cr
as

he
s

nm
QSYM
PerfFuzz
MemLock
FairFuzz

Angora
AFLfast
AFL

0 5 10 15 20
time (hour)

0

50

100

150

200

250

300

Nu
m

be
r o

f U
ni

qu
e

Cr
as

he
s

readelf
QSYM
PerfFuzz
MemLock
FairFuzz

Angora
AFLfast
AFL

0 5 10 15 20
time (hour)

0
2
4
6
8

10
12
14
16
18

Nu
m

be
r o

f U
ni

qu
e

Cr
as

he
s

openjpeg
QSYM
PerfFuzz
MemLock
FairFuzz

Angora
AFLfast
AFL

Figure 5: The growth trend of unique crashes found in different fuzzers; higher is better

MemLockwithin 24 hours. Therefore, it is proved that our memory-
consumption guided strategy is very effective in finding memory
consumption bugs.

In addition, we also conduct the statistic test for unique vulner-
ability evaluation. Out of 204 Â12 values in the table, 139 (68.1%)
Â12 values are bold and exceeding the conventionally large effect
size (0.71). Thus, MemLock significantly outperforms other 6 state-
of-the-art fuzzers in finding unique vulnerabilities.
Case Study. To demonstrate the reason behindMemLock’s superi-
ority, we present the case of CVE-2019-6293. It is an uncontrolled-
recursion vulnerability in flex, which is a lexical analyzer generator.
The lexical analyzer generated by flex has to provide “beginning”
state and “ending” states. The mark_beginning_as_normal func-
tion mark each “beginning” state in a machine as being a “normal”
state, and the “beginning” states are the epsilon closure of the first
state. The mark_beginning_as_normal function would call to it-
self if there is a state reachable from the first state through epsilon.
We investigateMemLock’s mutation history and identify a key mu-
tation step. The test case triggers the mark_beginning_as_normal
function calling itself for multiple times, through havoc mutation
operation. Then, the recursive depth of this function is multiplied
by splice operation, and finally leading to stack-overflow.

More interestingly,MemLock takes only 5.4 hours on average to
discover this vulnerability, while other fuzzers all fail. We can also
see the peak length of call stack of flex in Figure 6. AFL does not
retain any seed over 5000 lengths, as those inputs do not increase
coverage. Comparing to AFL, MemLock intentionally keeps seeds
that increase the peak length of call stack, and finally triggering
stack-overflow. This explains the reason whyMemLock can find
the vulnerability, while AFL can not detect it in all 5 runs.
NewVulnerabilitiesMemLock Found.WithMemLock, we have
discovered many previously unknown security-critical vulnera-
bilities. These vulnerabilities were not previously reported. We
informed the maintainers, and Mitre assigned 15 CVEs. Among
these 15 CVEs, 8 CVEs are uncontrolled-recursion vulnerabilities,
5 are vulnerabilities due to uncontrolled-memory-allocation issues,
and 2 are about memory leak vulnerabilities. An attacker might
leverage these vulnerabilities to launch an attack, by providing well-
conceived inputs that trigger excessive memory consumption. The
developers actively patched the vulnerabilities with our reports. At
the time of writing, 12 of these vulnerabilities have been patched.
Detailed information on our newly discovered vulnerabilities is
available on our website [48]. We are confident thatMemLock is
effective and viable in practice.

8

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Time to expose real-world vulnerability

MemLock AFL AFLfast PerfFuzz FairFuzz Angora QSYM

Program Vulnerability Type

Time(h) Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12
issue#58 UR 0.5 0.3 0.25 0.4 0.25 0.2 0.13 0.4 0.25 T/O 1.00 0.3 0.22mjs
issue#106 UR 13.7 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2018-9138 UR 0.3 7.2 1.00 10.1 1.00 0.5 0.81 T/O 1.00 T/O 1.00 3.3 1.00

CVE-2018-9996 UR T/O 16.5 0.00 T/O 0.50 T/O 0.50 T/O 0.50 T/O 0.50 T/O 0.50
CVE-2018-17985 UR 0.2 1.1 1.00 4.5 1.00 0.2 0.63 1.9 1.00 T/O 1.00 1.4 1.00

CVE-2018-18484 UR 0.2 1 1.00 4.5 1.00 0.2 0.63 8 1.00 T/O 1.00 1.4 1.00

cxxfilt

CVE-2018-18700 UR 0.2 1.2 1.00 4.6 1.00 0.3 0.75 12.6 1.00 T/O 1.00 1.4 1.00

CVE-2018-12641 UR 2.6 19.1 1.00 12.6 1.00 12.2 0.88 T/O 1.00 T/O 1.00 12.8 0.88

CVE-2018-17985 UR 10.4 18.2 0.81 11.9 0.56 T/O 1.00 T/O 1.00 T/O 1.00 13.3 0.63
CVE-2018-18484 UR 9.9 16.4 0.84 17.1 0.84 T/O 1.00 T/O 1.00 T/O 1.00 14 0.75
CVE-2018-18700 UR 9.6 14.9 0.63 17.8 0.88 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2018-18701 UR 13.9 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2019-9070 UR 18.4 15.6 0.56 13.9 0.44 T/O 1.00 T/O 1.00 T/O 1.00 15.8 0.56

nm

CVE-2019-9071 UR 12.4 T/O 0.88 14 0.69 T/O 0.88 T/O 0.88 T/O 1.00 T/O 0.88

CVE-2019-6290 UR 0.9 T/O 1.00 19 1.00 9 1.00 T/O 1.00 T/O 1.00 17.6 1.00nasm
CVE-2019-6291 UR 1.5 9 0.94 14 1.00 8.7 1.00 T/O 1.00 T/O 1.00 7.5 1.00

flex CVE-2019-6293 UR 5.4 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2019-6292 UR 0.4 T/O 1.00 18.4 1.00 0.9 0.81 T/O 1.00 T/O 1.00 T/O 1.00yaml-cpp
CVE-2018-20573 UR 6.1 T/O 0.88 T/O 0.84 12.4 0.84 T/O 0.84 T/O 1.00 T/O 0.84

CVE-2018-19837 UR 1.6 13.3 0.88 10.5 0.88 1.8 0.63 8.5 0.88 T/O 1.00 5 0.81

CVE-2018-20821 UR 0.1 5.7 1.00 6.5 1.00 0.1 0.50 9.5 1.00 T/O 1.00 7.4 1.00libsass
CVE-2018-20822 UR 15.6 14.3 0.50 19.5 0.56 14.6 0.47 11.3 0.56 0.92 0.00 10.5 0.44

yara CVE-2017-9438 UR 0.2 0.9 1.00 4.3 1.00 0.61 0.91 5.3 1.00 T/O 1.00 0.8 1.00

readelf CVE-2017-15996 UA 0.2 0.3 0.86 0.2 0.68 0.5 0.92 0.3 0.68 T/O 1.00 0.3 0.96

exiv2 CVE-2018-4868 UA 0.1 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.5 0.1 0.50
CVE-2018-20186 UA 0.4 0.4 0.50 0.4 0.50 0.4 0.50 0.4 0.50 0.1 0.00 0.4 0.50bento4
CVE-2019-7698 UA 14.6 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 0.5 0.00 T/O 1.00

CVE-2019-7581 UA 0.6 0.8 0.68 1.4 0.80 2 0.88 0.4 0.36 T/O 1.00 1.6 0.80

CVE-2019-7582 UA 0.1 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50libming
issue#155 UA 1.4 1 0.30 1.3 0.36 1.4 0.40 1.2 0.42 T/O 1.00 1.6 0.64
CVE-2019-6988 UA 7.8 15.1 0.86 11.1 0.84 T/O 1.00 T/O 1.00 T/O 1.00 15.3 0.81openjpeg
CVE-2017-12982 UA 4.5 11.4 0.72 10 0.60 T/O 1.00 11.9 0.64 T/O 1.00 10 0.50
CVE-2016-8886 UA 4.1 17 0.88 22.3 1.00 T/O 1.00 10.3 0.52 T/O 1.00 18.2 0.88jasper
issue#207 UA 1.7 2.2 0.62 3.6 0.68 T/O 1.00 2.2 0.68 15.9 1.00 4 0.64

Average Time Usage (Improvement) 5.4 11.6 (2.15×) 11.6 (2.15×) 11.9 (2.20×) 14.5 (2.69×) 20.3 (3.76×) 11.2 (2.07×)

Unique Vulnerabilities (Improvement) 33 26 (+26.9%) 28 (+17.9%) 20 (+65.0%) 17 (+94.1%) 6 (+450.0%) 25 (+32.0%)

* UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug. T/O means the fuzzer can’t find this vulnerability throughout 24 hours across 5
repetitions. When we calculate the average time usage, we replace T/O with 24 hours. We highlight the Â12 in the bold if its corresponding Mann-Whitney U test is significant.

From the analysis of Table 2, the case study and new vul-
nerabilitiesMemLock found, we can positively answer RQ2
that MemLock significantly outperforms the state-of-the-art
fuzzers in terms of real-world memory consumption vulnera-
bility detection.

4.4 Memory Leakage Evaluation (RQ3)

Memory leak bugs are a little different from uncontrolled-recursion
and uncontrolled-memory-allocation bugs, because they may not
lead to program crashes immediately. Only enough memory is
leaked, it would produce Denial-of-Service (DoS) attack, for exam-
ple, in a long time running programs (e.g., banking service). To
evaluate the effectiveness of fuzzers in finding memory leaks, we
look into the number of total bytes leaked during 7 different fuzzers
within 24 hours

Table 3 shows the amount of memory leak (in bytes) identified
by each fuzzer that may occur in different programs. We can see
that MemLock shows an obvious advantage over other baseline
fuzzers. The number of bytes leaked is improved (increased) by

from 234% to 3753163%, compared to other baseline fuzzers. This is
because MemLock tries to maximize each allocation and generates
inputs with high memory consumption. When the memory leak
happens, those memory-consuming inputs will often cause more-
bytes memory leakage.

From the results in Table 3, we can answerRQ3 thatMemLock
significantly magnifies the memory leakage comparing to
the state-of-the-art fuzzing techniques, due to its memory
consumption guidance.

4.5 Memory Consumption Evaluation (RQ4)

SinceMemLock seeks to generate test inputs that consume more
and more memory. In this experiment, we evaluate the test in-
put distribution according to memory consumption forMemLock,
AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM. A fuzzer that
maintains a seed pool with a larger proportion of high memory con-
sumption inputs is considered to have a better chance of detecting
memory consumption bugs.

9

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

0 5000
10000

15000
20000

25000

the peak length of call stack

100

101

102

103

of

 se
ed

s i
n

se
ed

 p
oo

l

nm
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0 5000
10000

15000
20000

the peak length of call stack

100

101

102

103

of

 se
ed

s i
n

se
ed

 p
oo

l

nasm
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0 5000
10000

15000
20000

25000
30000

the peak length of call stack

101

102

103

104

of

 se
ed

s i
n

se
ed

 p
oo

l

flex
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0 2000 4000 6000 8000
10000

the peak length of call stack

100

101

102

103

of

 se
ed

s i
n

se
ed

 p
oo

l

yara
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
amount of consumed heap memory (bytes) 1e9

100

101

102

103

104

of

 se
ed

s i
n

se
ed

 p
oo

l

readelf
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
amount of consumed heap memory (bytes) 1e9

100

101

102

103

of

 se
ed

s i
n

se
ed

 p
oo

l

openjepg
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
amount of consumed heap memory (bytes) 1e9

100

101

102

103

104

of

 se
ed

s i
n

se
ed

 p
oo

l

jasper
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
amount of consumed heap memory (bytes) 1e9

100

101

102

103

104

of

 se
ed

s i
n

se
ed

 p
oo

l

libming
AFL
AFLfast
FairFuzz

MemLock
PerfFuzz
QSYM

Figure 6: Seed distribution based on memory consumption. The larger the value on the right side is better.

Table 3: Total Leak Bytes

Program Type Tool leakge (Bytes) Improve. p-value Â12

bento4 memory leak

MemLock 52,709,574 - - -
AFL 151,862 +34609% 0.0061 1.00

AFLfast 1,233,255 +4174% 0.0061 1.00
PerfFuzz 105,984 +49633% 0.0061 1.00
FairFuzz 1,910,466 +2659% 0.0061 1.00
Angora 141,512 +37147% 0.0060 1.00
QSYM 15,784,847 +234% 0.0061 1.00

libming memory leak

MemLock 176,320,785 - - -
AFL 4,869,594 +3521% 0.0061 1.00

AFLfast 2,535,212 +6855% 0.0061 1.00
PerfFuzz 47,044,964 +257% 0.0061 1.00
FairFuzz 828,742 +21176% 0.0061 1.00
Angora 4,698 +3753163% 0.0060 1.00
QSYM 1,219,093 +14363% 0.0061 1.00

jsaper memory leak

MemLock 2,372,844,732 - - -
AFL 56,018,839 +4136% 0.0061 1.00

AFLfast 48,403,244 +4802% 0.0061 1.00
PerfFuzz 6,229,898 +37988% 0.0061 1.00
FairFuzz 56,788,235 +4096% 0.0061 1.00
Angora 191,907,941 +1136% 0.0105 0.98
QSYM 38,244,568 +6104% 0.0061 1.00

Figure 6 shows the input distribution based onmemory consump-
tion. In general, we can clearly see that MemLock can generate
more seeds with higher memory consumption. This is because the
guidance mechanisms in MemLock help to gradually add more
and more memory consuming inputs into the seed pool. In par-
ticular, for the uncontrolled-recursion bugs (nm, nasm, flex and
yara),MemLock generates a large number of inputs that hold more
than 30,000 function calls in the call stack, while PerfFuzz gen-
erates only a few and AFL/AFLfast can hardly generate inputs
that hold more than 10,000 function calls. The pattern is similar
for uncontrolled-memory-allocation bugs (readelf, openjpeg, jasper
and libming). MemLock can generate a considerable amount of
inputs with high memory consumption while the inputs of the
other fuzzers concentrate on the low memory consumption region.

The results clearly demonstrate the effectiveness of the strategies
of MemLock in generating inputs with high memory consumption.

After analyzing Figure 6, we can answer RQ4 that the strate-
gies of MemLock indeed help to generate inputs with high
memory consumption.

4.6 Discussion

Additional Experiments. The above four groups of experiments
show that MemLock is effective and efficient in finding memory
consumption vulnerabilities. Since MemLock focuses on the space
complexity issues, it may fall behind other baseline fuzzers in other
performance metrics. For example,MemLock intentionally keeps
seeds that increase memory consumption, which may degrade its
capability of identifying other types of vulnerabilities. We have
therefore evaluated the capability of finding other types of crashes.
In the benchmark programs, MemLock, AFL, AFLfast, PerfFuzz,
FairFuzz, Angora and QSYM find 77, 239, 228, 189, 276, 343 and 236
other types of unique crashes, respectively. Moreover, our approach
may also incur some runtime overhead. Therefore, we compare
the code coverage and execution speed for each baseline fuzzer.
In total, the number of executed test inputs in MemLock ranges
from 20% to 84% of those in AFL, AFLfast, FairFuzzer and QSYM.
Among all the fuzzers, PerfFuzz performs the worst likely due to
the fact that it prefers the test inputs that execute long instructions.
Considering the code coverage,MemLock achieves the comparable
code coverage, compared to the fuzzers AFL, AFLfast, FairFuzzer
and QSYM. PerfFuzz still performs the worst among those fuzzers,
and in most cases it only achieves the code coverage from about
60% to 70% of those in other fuzzers. All extra experimental results
and data are available on our website[48] for interested readers.
Threats to Validity.We selected a variant of real-world programs
to show the capabilities of MemLock, and compared it against other
state-of-the-art fuzzers. However, our benchmarks may still include

10

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

a certain sample bias. Further studies on more real-world programs
can help better evaluate MemLock. Besides, MemLock also suffers
from the difficulty in breaking through hard comparisons (e.g.,
magic bytes) as most work [7, 11, 28]. Adopting some program
analysis techniques (e.g., symbolic execution) might help mitigate
this threat.

5 RELATEDWORK

Coverage-based Grey-box Fuzzing. Coverage-based grey-box
fuzzing [3, 39, 41, 44, 47, 57, 66] is one of the most effective tech-
niques to find vulnerabilities and bugs, and has attracted a great
deal of attention from both academic and industry. Coverage-based
grey-box fuzzers typically adopt the coverage information to guide
different program path explorations. For example, Google has built
an OSS-FUZZ platform [61] by incorporating several state-of-the-
art coverage-based grey-box fuzzers: libFuzzer [45], honggfuzz [9],
AFL [84] and ClusterFuzz [30].

Since a coverage guidance engine is a key component for the
grey-box fuzzers, much effort has been devoted to improve their
coverage. Steelix [40], Vuzzer [59] and REDQUEEN [3] use program-
state analysis or taint analysis to penetrate some paths protected by
magic bytes comparisons. QSYM [83], Driller [64] and SAFL [76]
equips grey-box fuzzing with a symbolic execution engine to reach
deeper program code. Angora [12] adopts a gradient descent tech-
nique to solve path constraints so as to break some hard compar-
isons. MemFuzz [16] augmenting evolutionary fuzzing by addi-
tionally leveraging information about memory accesses (instead
of memory consumption) performed by the target program. Pro-
Fuzzer [82], GRIMOIRE [6], Superion [75] and Zest [56] leverage
the knowledge in highly-structured files to generate syntactically
and semantically valid test inputs, and thus be able to touch deeper
program code. CollAFL [28] proposes a coverage sensitive fuzzing
solution to mitigate the path collisions. FairFuzz [38] leverages
a targeted mutation strategy to execute towards rare branches.
UAFL [73] incorporates typestate properties and information flow
to their fuzzing engine to guide the detection of use-after-free
vulnerabilities. Besides, AFLgo [7] and Hawkeye [11] use the dis-
tance metrics to execute towards user-specified target sites in the
program. The main difference between MemLock and these state-
of-the-art fuzzers is that, MemLock aims at memory consumption
bugs while the others are to find memory corruption vulnerabilities.
Thus,MemLock is orthogonal to these state-of-the-art fuzzers.

Recently, researchers have paid attention to the algorithmic com-
plexity vulnerabilities (i.e., time complexity issues) such as Slow-
Fuzz [58], Singularity [77] and PerfFuzz [37]. They use the number
of executed instructions as the guidance to explore the program
path with a longer path length. In contrast with MemLock, they
stress the time complexity issues whileMemLock considers space
complexity issues. The space complexity issues have its own unique
characteristics, as the amount of memory consumption can increase
(e.g., function entry, memory allocation) and decrease (e.g., function
exit, memory free),MemLock takes both of them into consideration.
Static Analysis. Static analysis is also used to analyze memory
consumption [1, 10, 13, 14, 31, 34, 70]. Wang et al. [70] presents a
type-guided worst-case input generation by using automatic amor-
tized resource analysis to derive symbolic bounds on the resource

usage of functions. Duc-Hiep et al. [15] presents a worst-case mem-
ory consumption analysis, which uses symbolic execution to ex-
haustively unroll loops and compute memory consumption of each
iteration. He et al. [31] and Chin et al. [14] employ static verification
to check a program’s memory usage is within the memory bounds,
while Chin et al. [13] uses static analysis to compute the mem-
ory usage bounds for assembly level programs. These approaches
rely on type theory or symbolic execution, thus they often suffer
from the scalability issue. SMOKE [26] is a path-sensitive memory
leak detector for millions of lines of code. It first uses a scalable
but imprecise analysis to compute a set of candidate memory leak
paths and then verifies the feasibility of the candidates using a more
precise analysis. While SMOKE can demonstrate the existence of
memory leak,MemLock can generate an input that produces the
memory leak.
Dynamic Analysis. Yuku et al. [46] proposes an improved real-
time scheduling algorithm to reduce maximal heap memory con-
sumption by controlling multitask scheduling. Different fromMem-
Lock, this technique aims at reducing memory consumption by
dynamic online scheduling while MemLock is to find memory con-
sumption bugs. BLEAK [69] is a system to debug memory leaks in
web applications. It leverages the observation that users often re-
peatedly return to the same visual state. Sustained growth between
round trips is a strong indicator of a memory leak. BLEAK is only
applicable to memory leak of web applications, whileMemLock can
find several kinds of memory consumption bugs. Radmin [24] is a
system for early detection of application-level resource exhaustion
and starvation attacks. It first learns and executes multiple proba-
bilistic finite automata from its benign executions. It then restricts
the resource usage to the learned automata and detects resource
usage anomalies. Radmin uses some heuristics to detect resource
usage anomalies, whileMemLock employs the fuzzing technique to
automatically generate the inputs for memory consumption bugs.

6 CONCLUSION

In this paper, we proposeMemLock, an enhanced grey-box fuzzing
technique to find memory consumption bugs.MemLock employs
both coverage and memory consumption information to guide the
fuzzing process. The coverage information guides the exploration
of different program paths, while the memory consumption infor-
mation guides the search for those program paths that exhibit more
and more memory consumption. Our experimental results have
shown that MemLock outperforms state-of-the-art fuzzing tech-
niques (i.e., AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM)
in detecting memory consumption bugs. We also found 15 security-
critical vulnerabilities in some real-world programs. At the time of
writing, 12 of these vulnerabilities have been patched.

ACKNOWLEDGEMENTS

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grants No. 61772347, 61836005,
61972260, 61772408, 61721002, Ant Financial Services Group through
Ant Financial Research Program, Guangdong Basic and Applied
Basic Research Foundation under Grant No. 2019A1515011577, Na-
tional Key R&DProgram of China under Grant No. 2018YFB0803501.

11

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Cheng Wen et al.

REFERENCES

[1] Jeppe L Andersen, Mikkel Todberg, Andreas E Dalsgaard, and René Rydhof
Hansen. 2013. Worst-casememory consumption analysis for SCJ. In Proceedings of
the 11th International Workshop on Java Technologies for Real-time and Embedded

Systems. ACM, 2–10.
[2] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests

to assess randomized algorithms in software engineering. In Software Engineering,
2011 33rd International Conference on. IEEE, 1–10.

[3] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.
In Proceedings of the Network and Distributed System Security Symposium.

[4] Bento4. 2019. Full-featured MP4 format and MPEG DASH library and tools.
http://www.bento4.com. accessed: 2019-08-01.

[5] GNU binutils. 2019. a collection of binary tools. https://www.gnu.org/software/
binutils/. accessed: 2019-08-01.

[6] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, SimonWörner, and ThorstenHolz. 2019. GRIMOIRE: Synthesizing Structure
while Fuzzing. (2019).

[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference

on Computer and Communications Security. ACM, 2329–2344.
[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-

based greybox fuzzing asmarkov chain. IEEE Transactions on Software Engineering
(2017).

[9] Maintained by Google. 2018. honggfuzz. http://honggfuzz.com/.
[10] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao.

2014. End-to-end verification of stack-space bounds for C programs. In ACM

SIGPLAN Notices, Vol. 49. ACM, 270–281.
[11] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,

and Yang Liu. 2018. Hawkeye: towards a desired directed grey-box fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2095–2108.
[12] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.

In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.
[13] Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin. 2008.

Analysing memory resource bounds for low-level programs. In the 7th Inter-

national Symposium on Memory Management, (ISMM 2008). 151–160. https:
//doi.org/10.1145/1375634.1375656

[14] Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin C. Rinard. 2005.
Memory Usage Verification for OO Programs. In 12th International Symposium

on Static Analysis (SAS 2005). 70–86. https://doi.org/10.1007/11547662_7
[15] Duc-Hiep Chu, Joxan Jaffar, and Rasool Maghareh. 2016. Symbolic execution for

memory consumption analysis. ACM SIGPLAN Notices 51, 5 (2016), 62–71.
[16] Nicolas Coppik, Oliver Schwahn, and Neeraj Suri. 2019. MemFuzz: UsingMemory

Accesses to Guide Fuzzing. In 2019 12th IEEE Conference on Software Testing,

Validation and Verification (ICST). IEEE, 48–58.
[17] CVE-2017-9804. 2017. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2017-9804.
[18] CVE-2018-17985. 2018. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-17985.
[19] CVE-2018-4868. 2019. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-4868.
[20] CVE-2019-6291. 2019. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-6291.
[21] CVE-2019-6292. 2019. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-6292.
[22] CVE-2019-7704. 2019. Available from MITRE. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-7704.
[23] CVE Details. accessed: 2019. The list of Vulnerabilities according to CWE-400:

Uncontrolled Resource Consumption. https://www.cvedetails.com/cwe-details/
400/Uncontrolled-Resource-Consumption-039-Resource-Exhaustion.html.

[24] Mohamed Elsabagh, Daniel Barbará, Dan Fleck, and Angelos Stavrou. 2018. On
early detection of application-level resource exhaustion and starvation. Journal
of Systems and Software 137 (2018), 430–447.

[25] Exiv2. 2019. Image metadata library and tools. http://www.exiv2.org/. accessed:
2019-08-01.

[26] Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou Zhou, and Charles
Zhang. 2019. SMOKE: Scalable Path-Sensitive Memory Leak Detection for Mil-
lions of Lines of Code. In Proceedings of the 41st International Conference on

Software Engineering, ICSE, Gothenburg, Sweden.
[27] Flex. 2019. The Fast Lexical Analyzer - scanner generator for lexing in C and

C++. https://github.com/westes/flex. accessed: 2019-08-01.
[28] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and

Zuoning Chen. 2018. CollAFL: Path sensitive fuzzing. In 2018 IEEE Symposium

on Security and Privacy. IEEE, 679–696.
[29] Google. 2018. The list of common sanitizer options. https://github.com/google/

sanitizers/wiki/SanitizerCommonFlags.

[30] Google. 2019. ClusterFuzz. https://google.github.io/clusterfuzz/.
[31] Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan Chin. 2009.

Memory Usage Verification Using Hip/Sleek. In 7th International Symposium

on Automated Technology for Verification and Analysis (ATVA 2009). 166–181.
https://doi.org/10.1007/978-3-642-04761-9_14

[32] Jasper. 2019. Image Processing/Coding Tool Kit. https://www.ece.uvic.ca/~frodo/
jasper/. accessed: 2019-08-01.

[33] Xiangkun Jia, Chao Zhang, Purui Su, Yi Yang, Huafeng Huang, and Dengguo
Feng. 2017. Towards efficient heap overflow discovery. In 26th USENIX Security

Symposium. 989–1006.
[34] Daniel Kästner and Christian Ferdinand. 2014. Proving the absence of stack

overflows. In International Conference on Computer Safety, Reliability, and Security.
Springer, 202–213.

[35] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2123–2138.
[36] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for

lifelong program analysis & transformation. In Proceedings of the international

symposium on Code generation and optimization: feedback-directed and runtime

optimization. IEEE Computer Society, 75.
[37] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. 2018. PerfFuzz:

automatically generating pathological inputs. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis. ACM, 254–
265.

[38] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 475–485.
[39] Jun Li, Bodong Zhao, and Chao Zhang. 2018. Fuzzing: a survey. Cybersecurity 1,

1 (2018), 6.
[40] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,

and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings

of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM,
627–637.

[41] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. 2018.
Fuzzing: State of the art. IEEE Transactions on Reliability 67, 3 (2018), 1199–1218.

[42] Libming. 2019. A library for generating Macromedia Flash files. http://www.
libming.org/. accessed: 2019-08-01.

[43] Libsass. 2019. A C/C++ implementation of a Sass compiler. https://github.com/
sass/libsass. accessed: 2019-08-01.

[44] Xiaolong Liu, Qiang Wei, Qingxian Wang, Zheng Zhao, and Zhongxu Yin. 2018.
CAFA: A Checksum-Aware Fuzzing Assistant Tool for Coverage Improvement.
Security and Communication Networks (2018).

[45] LLVM-Documentation. 2018. libFuzzer - a library for coverage-guided fuzz
testing. http://llvm.org/docs/LibFuzzer.html.

[46] Yuki Machigashira and Akio Nakata. 2018. An Improved LLF Scheduling for
Reducing Maximum Heap Memory Consumption by Considering Laxity Time.
In 2018 International Symposium on Theoretical Aspects of Software Engineering.
IEEE, 144–149.

[47] Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2018. Fuzzing: Art, Science, and
Engineering. arXiv preprint arXiv:1812.00140 (2018).

[48] MemLock. accessed: 2020-01-01. MemLock’s Home Page. https://
icse2020-memlock.github.io/.

[49] MITRE. accessed: 2019. CWE-400: Uncontrolled Resource Consumption. https:
//cwe.mitre.org/data/definitions/400.html.

[50] MITRE. accessed: 2019. CWE-401: Missing Release of Memory after Effective
Lifetime. https://cwe.mitre.org/data/definitions/401.html.

[51] MITRE. accessed: 2019. CWE-674: Uncontrolled Recursion. https://cwe.mitre.
org/data/definitions/674.html.

[52] MITRE. accessed: 2019. CWE-789: Uncontrolled Memory Allocation. https:
//cwe.mitre.org/data/definitions/789.html.

[53] mjs. 2019. mjs: Restricted JavaScript engine. https://github.com/cesanta/mjs.
accessed: 2019-08-01.

[54] Nasm. 2019. The Netwide Assembler. https://www.nasm.us. accessed: 2019-08-01.
[55] Openjpeg. 2019. An open-source JPEG 2000 codec written in C language. https:

//github.com/uclouvain/openjpeg. accessed: 2019-08-01.
[56] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves

Le Traon. 2019. Semantic Fuzzing with Zest. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’19).
[57] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by

program transformation. In 2018 IEEE Symposium on Security and Privacy. IEEE,
697–710.

[58] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2155–2168.
[59] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. Vuzzer: Application-aware evolutionary fuzzing. In

12

http://www.bento4.com
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
http://honggfuzz.com/
https://doi.org/10.1145/1375634.1375656
https://doi.org/10.1145/1375634.1375656
https://doi.org/10.1007/11547662_7
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9804
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17985
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-17985
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4868
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-4868
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6291
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6291
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6292
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-6292
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7704
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7704
https://www.cvedetails.com/cwe-details/400/Uncontrolled-Resource-Consumption-039-Resource-Exhaustion.html
https://www.cvedetails.com/cwe-details/400/Uncontrolled-Resource-Consumption-039-Resource-Exhaustion.html
http://www.exiv2.org/
https://github.com/westes/flex
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://github.com/google/sanitizers/wiki/SanitizerCommonFlags
https://google.github.io/clusterfuzz/
https://doi.org/10.1007/978-3-642-04761-9_14
https://www.ece.uvic.ca/~frodo/jasper/
https://www.ece.uvic.ca/~frodo/jasper/
http://www.libming.org/
http://www.libming.org/
https://github.com/sass/libsass
https://github.com/sass/libsass
http://llvm.org/docs/LibFuzzer.html
https://icse2020-memlock.github.io/
https://icse2020-memlock.github.io/
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/674.html
https://cwe.mitre.org/data/definitions/789.html
https://cwe.mitre.org/data/definitions/789.html
https://github.com/cesanta/mjs
https://www.nasm.us
https://github.com/uclouvain/openjpeg
https://github.com/uclouvain/openjpeg

MemLock: Memory Usage Guided Fuzzing ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Proceedings of the Network and Distributed System Security Symposium.
[60] Alexey Samsonov and Kostya Serebryany. 2013. New features in addresssanitizer.

(2013).
[61] Kostya Serebryany. 2017. OSS-Fuzz-Google's continuous fuzzing service for open

source software. (2017).
[62] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy

Vyukov. 2012. AddressSanitizer: A fast address sanity checker. In Presented as

part of the 2012 USENIX Annual Technical Conference. 309–318.
[63] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018. ReS-

cue: crafting regular expression DoS attacks. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. ACM, 225–235.
[64] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
NDSS, Vol. 16. 1–16.

[65] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war
in memory. In Security and Privacy, 2013 IEEE Symposium on. IEEE, 48–62.

[66] Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

[67] Victor Van der Veen, Lorenzo Cavallaro, Herbert Bos, et al. 2012. Memory errors:
The past, the present, and the future. In InternationalWorkshop on Recent Advances

in Intrusion Detection. Springer, 86–106.
[68] András Vargha and Harold D Delaney. 2000. A critique and improvement of

the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[69] John Vilk and Emery D Berger. 2018. BLeak: automatically debugging memory
leaks in web applications. In Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation. ACM, 15–29.
[70] Di Wang and Jan Hoffmann. 2019. Type-Guided Worst-Case Input Generation.

Proceedings of the ACM on Programming Languages (2019).
[71] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jin Song Dong, Qinghua

Zheng, and Ting Liu. 2019. Explaining Regressions via Alignment Slicing and
Mending. IEEE Transactions on Software Engineering (2019), 1–1.

[72] Haijun Wang, Ting Liu, Xiaohong Guan, Chao Shen, Qinghua Zheng, and Zijiang
Yang. 2016. Dependence guided symbolic execution. IEEE Transactions on Software
Engineering 43, 3 (2016), 252–271.

[73] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yang Liu, Shengchao Qin, Hongxu
Chen, and Yulei. Sui. 2020. Typestate-Guided Fuzzer for Discovering Use-after-
Free Vulnerabilities. In 2020 IEEE/ACM 42nd International Conference on Software

Engineering. Seoul, South Korea.
[74] Haijun Wang, Xiaofei Xie, Shang-Wei Lin, Yun Lin, Yuekang Li, Shengchao Qin,

Yang Liu, and Ting Liu. 2019. Locating vulnerabilities in binaries via memory
layout recovering. In Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering. 718–728.
[75] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-

Aware Greybox Fuzzing. In Proceedings of the 41st International Conference on

Software Engineering, ICSE, Gothenburg, Sweden.
[76] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin

Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating testing cov-
erage with symbolic execution and guided fuzzing. In Proceedings of the 40th

International Conference on Software Engineering: Companion Proceeedings. ACM,
61–64.

[77] Jiayi Wei, Jia Chen, Yu Feng, Kostas Ferles, and Isil Dillig. 2018. Singularity:
Pattern fuzzing for worst case complexity. In Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. ACM, 213–223.
[78] Technical whitepaper for afl fuzz. 2019. american fuzzy lop. http://lcamtuf.

coredump.cx/afl/technical_details.txt. accessed: 2019-08-01.
[79] Zhiwu Xu, Cheng Wen, and Shengchao Qin. 2018. State-taint analysis for detect-

ing resource bugs. Science of Computer Programming 162 (2018), 93–109.
[80] yaml cpp. 2019. A YAML parser and emitter in C++. https://github.com/jbeder/

yaml-cpp. accessed: 2019-08-01.
[81] Yara. 2019. The pattern matching swiss knife for malware researchers. http:

//virustotal.github.io/yara/. accessed: 2019-08-01.
[82] Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang, Xiangyu Zhang, XiaoFeng

Wang, and Bin Liang. 2019. Profuzzer: On-the-fly input type probing for better
zero-day vulnerability discovery. In Security and Privacy, 2019 IEEE Symposium

on. IEEE.
[83] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A

Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In 27th USENIX

Security Symposium. 745–761.
[84] Michal Zalewski. 2017. American Fuzzy Lop 2.52b. http://lcamtuf.coredump.cx/

afl/.

13

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/jbeder/yaml-cpp
https://github.com/jbeder/yaml-cpp
http://virustotal.github.io/yara/
http://virustotal.github.io/yara/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivating Examples
	2.2 Approach Overview

	3 Methodology
	3.1 Static Analysis
	3.2 Fuzzing Loop

	4 Evaluation
	4.1 Experiment Setup
	4.2 Unique Crashes Evaluation (RQ1)
	4.3 Real-world Vulnerability Evaluation (RQ2)
	4.4 Memory Leakage Evaluation (RQ3)
	4.5 Memory Consumption Evaluation (RQ4)
	4.6 Discussion

	5 Related Work
	6 Conclusion
	References

