FlashSchema: Achieving High Quality XML
Schemas with Powerful Inference Algorithms and
Large-scale Schema Data

Yeting Lit$, Jialun Caof, Haiming Chen!, Tingjian Ge?, Zhiwu Xu®, Qiancheng Peng!$
T State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
§ University of Chinese Academy of Sciences, Beijing, China
¥ The Hong Kong University of Science and Technology, Hong Kong, China
: University of Massachusetts, Lowell, United States
% College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
5 {liyt,chm,pengqc} @ios.ac.cn, *jcaoap@cse.ust.hk, fge@cs.uml.edu, "xuzhiwu@szu.edu.cn

Abstract—Getting high quality XML schemas to avoid or
reduce application risks is an important problem in practice,
for which some important aspects have yet to be addressed
satisfactorily in existing work. In this paper, we propose a
tool FlashSchema for high quality XML schema design, which
supports both one-pass and interactive schema design and schema
recommendation. To the best of our knowledge, no other existing
tools support interactive schema design and schema recommen-
dation. One salient feature of our work is the design of algorithms
to infer k-occurrence interleaving regular expressions, which are
not only more powerful in model capacity, but also more efficient.
Additionally, such algorithms form the basis of our interactive
schema design. The other feature is that, starting from large-
scale schema data that we have harvested from the Web, we
devise a new solution for type inference, as well as propose
schema recommendation for schema design. Finally, we conduct
a series of experiments on two XML datasets, comparing with
9 state-of-the-art algorithms and open-source tools in terms of
running time, preciseness, and conciseness. Experimental results
show that our work achieves the highest level of preciseness and
conciseness within only a few seconds. Experimental results and
examples also demonstrate the effectiveness of our type inference
and schema recommendation methods.

I. INTRODUCTION

As a main data exchange format, XML has been widely
used in various applications on the Web. In recent years,
although some competing formats such as JSON appeared,
XML has advantages in many aspects and still serves as
a common data exchange format—for this reason, major
database management systems such as Oracle, SQL Server,
DB2, and MySQL all support XML. XML schemas have
always played a crucial role in XML data management. Low
quality schemas, however, may pose serious risks—including
security risks. For example, over-permissive schemas could
allow invalid values with potential safety hazards.

Obtaining high quality schemas to avoid or reduce appli-
cation risks is an important problem in practice. However,
for this problem, many challenging issues have not been well
addressed by existing work. This problem is closely related
to schema inference—this is because many XML documents

in practice are not accompanied by a (valid) schema [1], thus
making schema inference an essential task.

Inference of regular expressions (REs) is an essential issue
in the XML schema inference problem [2]-[8]. Presently, the
most powerful model for XML is the k-occurrence regular
expression (k-ORE), which means each symbol can occur at
most k times in an expression. According to [9], its coverage
in DTD and XSD is up to almost 100%. However, it does
not support the unordered operator interleaving, whereas this
operator plays a contributing role in RNG, making its coverage
only 76.11% in RNG. The statistics in [9] also show that when
supporting both k-occurrence (1 < k£ < 7) and interleaving,
the coverage in RNG achieves 99.85%. This indicates the need
for the interleaving operator, and a more powerful model than
k-ORE.

Supporting both k-occurrence and interleaving makes the
problem challenging. In the literature, there have been only
a few attempts to address either k-OREs or interleaving.
Inferring k-OREs is much more complicated than the single-
occurrence ones (i.e. each symbol occurs at most once) [4].
Furthermore, learning single-occurrence REs (SOREs) with
interleaving is already intractable, as this unordered operator
drastically increases the possible number of REs, let alone k-
occurrence with interleaving. Currently there is only one paper
addressing k-OREs with limited interleaving [10].

Further, presently almost all XML inference algorithms
only support learning from positive samples. On the other
hand, it has been proved that learning from positive and
negative samples is more powerful than only from positive
samples [11]. Indeed, negative samples are useful in many
applications—e.g., schema evolution [12] can be done incre-
mentally with little feedback needed from the user, when we
also allow negative samples. Therefore, we aim to learn from
both positive and negative samples.

Besides RE inference, type inference is also an important
aspect of XML schema inference. One difficulty lies in how
to infer types as accurately as possible. Unfortunately, most
of the existing approaches either do not take into account

type inference, or omit the types and consider all values as
strings. To our knowledge, only two methods [13], [14] can
infer simple types only by a pattern-matching process on the
format of the values; i.e., the characteristics that make unique
a type, which is called the lexical space according to the
W3C Recommendation. There are two main limitations of
lexical space based methods: (i) they cannot infer all built-
in simple types, since there are intersections between types’
lexical spaces; (ii) they cannot infer user-defined types derived
from existing simple types.
The main contributions of the paper are as follows:

o We develop a tool FlashSchema for high quality schema
design based on several powerful yet efficient schema
inference algorithms and large-scale schema data. Specif-
ically, it supports interactive schema design and schema
recommendation, which cannot be supported by existing
tools.

o We propose a new subclass of REs, k-occurrence REs
with interleaving (k-OIREs). It covers almost 100% DTD,
XSD, and RNG schemas. We devise powerful and effi-
cient algorithms to infer k-OIREs from both positive and
negative samples, which also form the basis of interactive
schema design.

o Based on large-scale schema data, we provide a new so-
lution for type inference, which overcomes the limitations
of existing methods by using word embedding techniques
to take the semantics of the context into consideration; we
also propose schema recommendation for schema design,
which is suited for situations where the users only know
some elements of the schema under design, or the users
do not want to design from scratch.

o Experimental results show that our approach achieves
the highest level of preciseness and conciseness, outper-
forming all previous state-of-the-art results. Experimental
results and examples also reveal the effectiveness of our
type inference method.

II. MAIN TECHNIQUES

In this section, we present the main techniques of our
approach. Our framework FlashSchema gives three application
scenarios (i.e. one-pass schema design, interactive schema de-
sign and schema recommendation) for different requirements.
In particular, one-pass schema design means the process only
needs one run, and is suited for users who are clear of
their own needs and also can provide enough samples. In
such situations, our framework can give satisfactory results
in one run. On the other hand, if users are not fully clear
of their needs, and they have some samples at hand, then an
interactive schema design would be suitable. The users use
the interactive process to adjust input, i.e., to add, update, or
delete positive or negative samples based on the current results
returned by our framework. In this way, the users ultimately
fully understand their needs, and the process repeats until the
result returned by FlashSchema satisfies the users. If users only
know some element names of a schema under design, they
can use schema recommendation. FlashSchema may return the

most used schemas in practice that contain the user-provided
element names, based on our schema library, which certainly
are of great value for the schema under design. Next we will
illustrate the three scenarios through several examples.

(g ! ! Sehema library
k-OAsynthesizer 4.0 : i
H
H |
STEP 2. k-OA synthesizing [—

——————

XML documents Negative samples
(Negative, (Optional)
optional)

XML schema

marked RE generator
k-OA

RE Content Model

STEP 1. Sample extraction STEP 3. RE generation STEP 4. Schema export

Fig. 1: An overview of the inference engine.

A. One-pass Schema Design

There are four main steps in our inference engine (as shown
in Fig. 1). Firstly, from several XML files, we extract multiple
groups of samples. Then, each group of samples is fed into a
k-OA synthesizer to produce a corresponding deterministic k-
OA!. Next, we mark the synthesized deterministic k-OAs and
generate possible REs from the marked k-OAs, by using an RE
generator. We convert the generated REs to the corresponding
content models and get the data types corresponding to the
content models, based on the lexical space analysis and the
semantics of the context. Finally, we combine content models
and corresponding data types into an XML schema.

The step RE generation has multiple choices according to
users’ needs. Users can call the procedure Soa2Sore [6] used
in Freydenberger and Kotzing’s work to get the REs for DTD-
s/XSDs content models; users can also execute our proposed
algorithm Soa2Soire [15] to get REs with interleaving for
RNG content models.

Example 1. Here is an example of inferring an RNG
content model. Suppose we extract positive samples
S*t={aacba, abda, abca, aabad, adba, abac} and negative
samples S~ ={acabd, adad, adab} from XML files. Then,
we execute the k-OA synthesizing algorithm to produce
a 2-OA (Fig. 2(a)) and we marked the synthesized 2-OA
(Fig. 2(b)). Fig. 2(c) gives an intermediate SOA obtained in
Soa2Soire(A), from which a marked RE af bjas&(cy|dy) is
built by Soa2Soire. Therefore, the final RE we extract for A
is ro = a*(ba&(c|d)). We convert ro into an RNG content
model, in which we use the interleave indicator in RNG to
replace &, choice for |, group for - and oneOrMore for +.
The inferred RNG content model is shown in Fig. 3.

Since the data types of RNG are not as rich as those of
XSD, we next see an example of inferring XSD data types.

Example 2. Here is an example of inferring XSD data types.
As shown in Fig. 4, there are four positive XML documents
that record location information, from which we infer the

'A deterministic k-OA, a specific kind of deterministic automaton with (i)
labels placed on states rather than on edges in which (ii) each alphabet symbol
occurs at most k times.

(a) k-OA A (b) marked k-OA A (c) marked k-OA

Fig. 2: The main process of k-OA synthesizing.

RE name - (latitude - longitude|coordinates) by using RE
generator. Note that existing work can only use text content
for the lexical space analysis, e.g., 55.95 is regarded as an
float type; while we believe that not only from the text (e.g.,
55.95), but also the semantics of the element (e.g., latitude)
and its context are useful for type inference. So naturally
we think of using natural language processing techniques to
analyze context semantics. Specifically, first we embed the
inferred RE and the REs in our library into vectors by using
the CBOW model [16]. Then, we find the most similar RE
(longitude - latitude|coordinates) - precision’ by vector
similarity computation, and return the corresponding types
{"longitude”: ”LongitudeType”; "latitude”: ”LatitudeType”;
coordinates”: ”CoordinatesStructure”} to the inferred RE.
For the name element, we give it a string type by lexical
space analysis. Similarly, We convert name - (latitude -
longitude|coordinates) into an XSD content model, in which
we use choice to replace “|”, and sequence for “”. Finally,
we combine the content model and the corresponding types
into an XSD. Our method can also be applied to other type
inferences, such as RDF.

B. Interactive Schema Design

Most existing approaches focus on purely automatic infer-
ence of an XML schema. The problem is that the resulting
schema may be unsatisfactory (i.e., over-fitting or under-
fitting) when the samples in the user’s hand are not sufficient.
Hence, a natural improvement is to exploit user interactions,
in which the user may adjust the input until the result is
satisfactory. Let us look at an example that illustrates the
process of interacting with users.

Example 3. Suppose the user has three positive XML files,
as shown in Fig. 5. Firstly, FlashSchema returns the resulting
schema <![ELEMENT root (a™b*) >. Suppose she is not
satisfied with the resulting schema, because she does not
want the element a to appear more than twice. So the user
constructs a negative XML file, as shown in Fig. 5, and feeds
the negative sample back to FlsahSchema. Then, FlsahSchema

<element name="root">
<oneOrMore> <element name="a"/> </oneOrMore>
<interleave>
<group> <element name="b"/> <element name="a"/> </group>
<choice> <element name="c"/> <element name="d"/> </choice>
</interleave>
</element>

Fig. 3: The inferred RNG content model.

< location >
<name> Edinburgh </name>
< > 55.95 </ >
<longitude> -3.19 </longitude>
</location >

<location>
<name> Beijing </name>
< le>39.91 </latitude>
<longitude> 116.40 </longitude>
</location>

<location>
<name> Boston </name>
<coordinates> 42°21’ N,71°3' W
</coordinates>

</location >

<location>
<name> Melbourne </name>
<coordinates> 37°48’ S, 144°56’ E
</coordinates>

</location>

Fig. 4: Four XML files that record location information.

get a new schema <!ELEMENT root (aa’b*) > based on
the new input. The user finds that the new resulting schema
is consistent with her intention—she is now satisfied, and the
interactive process stops.

. <root> <root> <root>
Posmye <a/> || <a/> <a/><a/>
XML files (| </root> </root> </root>

>
>
< LELEMENT root (a*b*) >

&
<

Negative
XML files
User

<root>
<a/><a/><a/>
ot:

</root>

‘ ‘FlashSchema

>

<! ELEMENT root (aa’b*) >

A

Fig. 5: An interaction example.

C. Schema Recommendation

We have collected 532,230 XML schema files from the
real world [9] and built the largest XML schema library
so far through a series of processing (such as schema nor-
malization [9], splitting the schema files to get the content
models and their corresponding REs). We can return the most
practical schemas in reality through SchemaRank [9], which
contain the XML elements that the user provides to our tool.
These widely used schemas in reality have been tested by
practice, and hence are of great value to non-expert users
who have limited knowledge on XML, and even to experts
who do not wish to design schemas from scratch. In addition,
schema recommendation also helps automatic schema repair
and cleaning.

III. EXPERIMENTS

All our experiments are conducted on a machine with 16
cores Intel Xeon CPU E5620 @ 2.40GHz with 12MB Cache,
24GB RAM, and Windows 10 operating system, implemented
in Python.

A. Datasets, Algorithms and Tools

We use two publicly available datasets, incollection and
www, as XML inference sources. They were extracted from
DBLP, a frequently-used data repository for XML schema
inference. incollection is a collection of 45,985 books, with
an alphabet of size 14 and www is the large dataset, con-
taining 2,000,226 URLs with an alphabet of size 10. The
experimental comparisons involve five state-of-the-art learn-
ing algorithms and four publicly available schema inference
tools used in the field. The learning algorithms include
Soa2Sore [6], Soa2Chare [6], iDREGEX [4], GenESIRE [8],
and ‘KOIRE [10]. We abbreviate them as S2S, S2C, IDR,

GES and KOI, respectively. While the public schema inference
tools include EditiX, IntelliJ IDEA, Liquid Studio, and Trang.
We abbreviate them as EDX, IDE, LS, and TRA, respectively.
FlashSchema is abbreviated as FS.

B. Running Time

The experiments are conducted on the large dataset www.
The result is displayed in TABLE I. We can see that /DR took
almost one day and KOI over five hours, while others only
need seconds to produce the REs. Remark that only /DR and
KOI and FS support k-ORE inference, this may explain why
they cost much longer time to get a result. It is noteworthy
that FS can finish the task within a few seconds.

TABLE I: Running time of the related work (in seconds).

Name S2S S2C IDR GES KOI EDX IDE LS TRA FS
Time 13 09 863079 34 187621 133 7.1 35 219 52
m“ ‘
10"
— 10 =
Kl 3
10" |
105 I
100 : | I | : 10° : ! I | - -
(a) incollection (b) www

Fig. 6: The |L£(r)| of learning algorithms/inference tools.

C. Preciseness and Conciseness

We choose Language Size (|L(r)|) [4], [10] as the criteria
to evaluate the balance between preciseness and conciseness.
The results are shown in Fig. 6. Overall, two datasets share
similar trends with only slight differences. It is clear that the
largest figure (1.86 x 1033) is achieved by EDX, IDE, and LS
on the first dataset, whereas the smallest |£(r)| (2.21 x 10%)
is reached by FS, meaning that FS strikes the best balance
between preciseness and conciseness. Note that the reason
why our FS achieves such good results especially in inferring
RNGs is due to its unrestricted support of interleaving. By
contrast, the tools that claim the support of RNG inference
(i.e., EDX, IDE, and TRA) give the |£(r)| of RNGs that is the
same as that of DTDs/XSDs. Upon examining the reasons, we
find that their RNGs are in fact structurally equivalent to the
DTDs/XSDs except for the grammar itself. That is, the RNGs
that they produce cannot reflect the power of RNG.

IV. CONCLUSION

In this paper, we devise algorithms along with a tool
called FlashSchema for high quality schema design, which
supports both one-pass and interactive schema design, as well
as schema recommendation. One salient feature of our work
is that we devise powerful and efficient algorithms to infer
k-OIREs from both positive and negative samples. These
algorithms also form the basis of an interactive schema design.
Another feature is that, starting from the large-scale schema
data that we have harvested from the Web, we provide a new

solution for type inference, as well as propose schema recom-
mendation for schema design. We have also conducted a series
of experiments on two XML datasets, comparing with 9 state-
of-the-art algorithms and open-source tools in terms of running
time, preciseness, and conciseness. Experimental results show
that our work achieves the highest level of preciseness and
conciseness within only a few seconds. Experimental results
and examples also demonstrate the effectiveness of our type
inference and schema recommendation methods. To the best of
our knowledge, no other existing tools can support interactive
schema design and schema recommendation.

ACKNOWLEDGMENT

Haiming Chen, Yeting Li and Qiancheng Peng are sup-
ported in part by the National Natural Science Foundation
of China under Grant Nos. 61872339, 61472405. Tingjian
Ge is supported in part by NSF grant [IS-1633271. Zhiwu
Xu is supported by the National Natural Science Foundation
of China under Grant No. 61972260 and Guangdong Basic
and Applied Basic Research Foundation under Grant No.
2019A1515011577.

REFERENCES

[11 S. Grijzenhout and M. Marx, “The quality of the XML web,” J. Web
Semant., vol. 19, pp. 59-68, 2013.

[2] M. Garofalakis, A. Gionis, K. Shim, K. Shim, and K. Shim, “XTRACT:
Learning document type descriptors from XML document collections,”
Data Mining and Knowledge Discovery, vol. 7, no. 1, pp. 23-56, 2003.

[3] G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls, “Inference of concise
dtds from XML data,” in Proceedings of the 32nd VLDB, 2006, pp.
115-126.

[4] G. J. Bex, W. Gelade, F. Neven, and S. Vansummeren, “Learning
deterministic regular expressions for the inference of schemas from
XML data,” TWEB, vol. 4, no. 4, pp. 14:1-14:32, 2010.

[5] R. Ciucanu and S. Staworko, “Learning schemas for unordered XML,”
in Proceedings of the 14th DBPL, 2013, pp. 31-40.

[6] D. D. Freydenberger and T. Kotzing, “Fast learning of restricted regular
expressions and DTDs,” Theory of Computing Systems, vol. 57, no. 4,
pp. 1114-1158, 2015.

[71 Y. Li, X. Mou, and H. Chen, “Learning concise Relax NG schemas
supporting interleaving from XML documents,” in Proceedings of the
14th ADMA, 2018, pp. 303-317.

[8] Y. Li, X. Zhang, H. Xu, X. Mou, and H. Chen, “Learning restricted
regular expressions with interleaving from XML data,” in Proceedings
of the 37th ER, 2018, pp. 586-593.

[9] Y. Li, X. Chu, X. Mou, C. Dong, and H. Chen, “Practical study of

deterministic regular expressions from large-scale XML and schema

data,” in Proceedings of the 22nd IDEAS, 2018, pp. 45-53.

Y. Li, X. Zhang, J. Cao, H. Chen, and C. Gao, “Learning k-occurrence

regular expressions with interleaving,” in Proceedings of the 24th

DASFAA, 2019, pp. 70-85.

E. M. Gold, “Language identification in the limit,”

Control, vol. 10, no. 5, pp. 447-474, 1967.

D. Florescu, “Managing semi-structured data,” ACM Queue, vol. 3, no. 8,

pp. 18-24, 2005.

[13] J. Hegewald, F. Naumann, and M. Weis, “Xstruct: Efficient schema

extraction from multiple and large XML documents,” in Proceedings

of the 22nd ICDE Workshops, 2006, p. 81.

B. Chidlovskii, “Schema extraction from XML collections,”

ings of the 2nd JCDL, 2002, pp. 291-292.

Y. Li, H. Chen, X. Zhang, and L. Zhang, “An effective algorithm for

learning single occurrence regular expressions with interleaving,” in

Proceedings of the 23rd IDEAS, 2019, pp. 24:1-24:10.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of

word representations in vector space,” in Proceedings of the Ist ICLR,

2013.

[10]

[11] Information and

[12]

[14] in Proceed-

[15]

[16]

	Introduction
	Main Techniques
	One-pass Schema Design
	Interactive Schema Design
	Schema Recommendation

	Experiments
	Datasets, Algorithms and Tools
	Running Time
	Preciseness and Conciseness

	Conclusion
	References

