
1

Type Learning for Binaries and its Applications
Zhiwu Xu, Cheng Wen, Shengchao Qin

Abstract—Binary type inference is a challenging problem due
partly to the fact that during the compilation much type-related
information has been lost. Most existing research work resorts
to program analysis techniques, which can be either too heavy-
weight to be viable in practice or too conservative to be able
to infer types with high accuracy. In this work, we propose a
new approach to learning types for binary code. Motivated by
“duck typing”, our approach learn types for recovered variables
from their features and properties (e.g., related representative
instructions). We first use machine learning to train a classifier
with basic types as its levels from binaries with debugging
information. The classifier is then used to learn types for new,
unseen binaries. While for composite types, such as pointer

and struct, a points-to analysis is performed. Finally, several
experiments are conducted to evaluate our approach. The results
demonstrate that our approach is more precise, both in terms of
correct types and compatible types, than the commercial tool
Hey-Rays, the open source tool Snowman and a recent tool
EKLAVYA using machine learning. We also show that the type
information our proposed system learns is capable of helping
detect malware.

Index Terms—Type Recovery, Type Learning, Binary Analysis,
Duck Typing, Machine Learning

I. INTRODUCTION

Due to the significant growth of untrusted code and mal-
ware, such as viruses and worms, there is an increasing
demand for tools to help security analysts and programmers
analyse and understand binary code. A recurring step in
many such tools is binary type inference, which aims to
infer high-level typed variables from binary code. Binary type
inference is required for, and would significantly benefit, many
applications such as binary analysis, binary code rewriting,
binary code reuse, decompilation, game hacking, hooking, pro-
tocol reverse engineering, malware analysis, virtual machine
introspection, vulnerability analysis and detection, and so on.
Comparing to type inference for high-level code, binary type
inference is much more challenging, largely due to the fact
that most program information is lost during compilation, in
particular, information about variables (which store the data),
and their types (which constrain how the data are stored,
interpreted and manipulated). Hence, binary type inference
involves two tasks: one is to identify high-level variables
from the binary code (called variable recovery), and one is
to give a high-level type to each recovered variable (called
type recovery).

Lots of research works on binary type inference have been
carried out, such as Hex-Rays [1], Retypd [2], REWORD [3],

Zhiwu Xu and Cheng Wen are with College of Computer Science and
Software Engineering, Shenzhen University, Shenzhen, China.

Shengchao Qin (the corresponding author) is with School of Computing,
Media and the Arts, Teesside University, Borough Road, Tees Valley, TS1
3BX, United Kingdom. He is also affiliated with Shenzhen University (as a
Visiting Professor). Email: s.qin@tees.ac.uk

SecondWrite [4], SmartDec [5], TIE [6] , and so on. However,
most of them tend to resort to program analysis techniques,
which are often too conservative to infer types with high accu-
racy. For instance, considering a memory byte (i.e., a variable)
which is only used to store 0 and 1, most existing tools,
such as Hex-Rays and SmartDec, recover for this memory
byte the type byte t (i.e., a type for bytes) or char, which is
clearly too conservative or incorrect (some further discussion
is given in Section II later). Furthermore, some of them are
too heavy-weight to use in practice, for instance, in the sense
that for large-scale programs they may generate too many
constraints to solve. For instance, “DIVINE [7] spends 2 hours
while analyzing programs of the order of 55, 000 assembly
instructions” [4]. This is because (i) there are much more
instructions in the low-level code than in the high-level code
in general; and (ii) there may be several possible constraints
for a low-level instruction, such as add and sub.

This work aims to propose an approach to learning high-
level types for binary code. Motivated by “duck typing”,
we propose to learn types for recovered variables from their
features and properties (e.g., related instructions). Specifically,
we first identify variables from binary code by analysing mem-
ory accesses. For instance, parameters and local variables are
always accessed through address expressions of the form “[ebp
+ offset]” and “[ebp - offset]”, respectively, where ebp is the
stack base pointer register. Then for these recovered variables
we extract their related instructions and some other helpful
information as their features. Next, we train a classifier with
basic types as its levels via various machine learning methods,
based on binaries with debugging information compiled from
a dataset of C programs. After the classifier is trained, we then
can use it to learn the most possible types for the recovered
variables. While for composite types, such as (multi-level)
pointer and struct, we resorts to a combination of machine
learning and program analysis techniques: we use a points-to
analysis first to identify the possible variables and then use the
classifier to learn for these variables basic types, which form
the result type.

We implement our approach in a prototype named BITY,
wherein we use the tool IDA Pro [1] as our front end
to disassemble binaries and scikit-learn [8] to implement
various classifiers. Using BITY, a series of experiments are
conducted to evaluate our approach. Firstly, we conduct some
experiments to see how well various machine learning methods
perform. We have found that the classifiers trained by SVM
with a linear kernel and Random Forest perform better than
the others. Secondly, we conduct experiments to compare
with the commercial tool Hey-Rays [1] and the open source
tool Snowman [9] on the benchmarks coreutils (v8.4), dif-
futils (v3.5) and findutils (v4.7). The experimental results
demonstrate that our tool is more precise than Hey-Rays and

2

Snowman, both in terms of correct types and compatible
types. Thirdly, we also conduct experiments to compare BITY
against EKLAVYA [10], a recent tool that can learn types
for function parameters via machine learning, and the results
show that BITY performs better than EKLAVYA. Fourthly,
to evaluate BITY further, we conduct experiments on binaries
of different sizes, which indicates that our prototype BITY is
scalable and suitable in practice. Finally, as an immediate ap-
plication, we feed the type information we learn into malware
detection and find that discovered type information is capable
of helping detect malware.

The contributions of the paper are twofold:
• An approach to learning types for binary code, using a

combination of machine learning and program analysis,
is proposed.

• A series of experiments are conducted to evaluate our
approach, which demonstrated that our approach is able
to learn more precise types, with reasonable performance,
and can help detect malware.

This paper extends [11] and further contains the details of
the revised algorithms, a points-to analysis for pointer and
struct, the generation of the type learning problem, more
experiments and several recent related work. In more detail, we
first revise the variable recovery algorithm and instruction ex-
traction algorithm for global variables. Second, we extend the
original points-to algorithm to collect more possible variables,
which can be used to form the possible struct types. Based on
the extended points-to algorithm, an algorithm to recover struct
pointer is then proposed. Third, we generalise the type learning
problem such that any other machine learning technique can
be applied here. Finally, we conduct more experiments to
evaluate our tool BITY further: (1) we conduct several cross-
validation experiments to evaluate how well the classifiers
trained by various machine learning methods would perform;
(2) we conduct experiments to compare BITY against Hex-
Rays and Snowman, which recover types via program analysis
on two new dataset diffutils and findutils; (3) We also conduct
experiments to compare BITY against EKLAVYA, a recent
tool that can learn types for function parameters from binaries
via machine learning; (4) As an immediate application, we
conduct experiments to check the viability of using the type
information BITY learns to help malware detection.

Organization. Section II illustrates some motivating ex-
amples whose types are not recovered correctly by most of
the existing tools and explains our idea. Our type learning
for binary code is introduced in Section III. Section IV
gives the experiments. Section V discusses the limitations and
Section VI presents related work. Section VII concludes the
paper.

II. MOTIVATING EXAMPLES

This section illustrates some motivating examples where it
is difficult to recover types correctly by existing approaches
and based on which we explain our main idea.

The first example, given in Figure 1, is obtained by compil-
ing a decode and encode program base64 from C runtime Li-
brary with MSVC or GCC into a binary and then disassemble

mov b y t e p t r [ebp �1] , 0
cmp dword p t r [ebp �8] , 64h
j z s h o r t loc 40101B
jmp s h o r t loc 40101F

loc 40101B :
mov b y t e p t r [ebp �1] , 1

loc 40101F :
movzx eax , b y t e p t r [ebp�1]
t e s t eax , eax
j z s h o r t loc 401035
c a l l do decode

loc 401035 :
r e t n

i n t main ()
{

bool decode = f a l s e ;
i n t o p t = g e t o p t ;
sw i t ch (o p t) {

case ’ d ’ :
decode = t rue ;
break ;

d e f a u l t :
break ;

}
i f (decode) do decode ;

}

Fig. 1. Snippet Code of the program base64

.
mov eax , dword p t r [ebp + 8]
.

mov eax , dword p t r [ebp + 8]
.

mov eax , dword p t r [ebp + 8]
.

mov eax , dword p t r [ebp + 8]
.

mov eax , dword p t r [ebp + 8]
.

mov dword p t r [ebp + 8] , eax
cmp dword p t r [ebp + 8] , 0
.

Fig. 2. Snippet Code for the program debug script

the binary with IDA Pro. For comparison, the source code in C
is given as well. In the high-level program, a variable decode
is declared with bool type and is used to record users’ options.
While in the low-level code, a byte in stack, that is [ebp-1],
is simply used to represent the variable decode, without any
type information. In other words, after compiling, the variable
and its related type is lost. Because of the over-conservative
program analysis techniques they adopt, most existing tools,
such as Hex-Rays and SmartDec, recover the type byte t or
char for the recovered variable [ebp-1] , which are clearly too
conservative or incorrect.

Secondly, consider the program debug script from GNU
Diff Utilities [12], which is used to print the changed infor-
mation. This program takes as a parameter a variable with type
(struct) pointer, which is represented as [ebp + 8] in assembly
codes and whose related instructions are listed in Figure 2.
According to the standard typing rules for assembly codes [2],
[6], the first 6 related instructions infer that the type of [ebp
+ 8] should be a type of size 32, while the last instruction
suggests that the type of [ebp + 8] is int. Accordingly, both
the types recovered for [ebp + 8] by Hex-Rays and Snowman
are int, which is incorrect.

What’s worse, programs with fewer instructions can be
more difficult for their types to be recovered correctly. Let us
consider the pseudo assembly code given in Figure 3, which
are compiled with MSVC1 from three simple assignments for
three variables with different types. Hex-Rays recovers for
both the variables i and f the type Dword* and for the variable
d the type Qword*. While SmartDec infers for all these three

1When compiling with GCC, the instruction for i remains the same, while
the ones for f and d will be a fld followed by a fstp.

3

%% i n t⇤ i ;
%% ⇤ i = 1 0 ;

mov [i] , 0Ah
%% f l o a t ⇤ f ;
%% ⇤ f = 1 0 . 0 ;

movss xmm0, ds :XX
movss [f] , xmm0

%% double⇤ d ;
%% ⇤d = 1 0 . 0 ;

movsd xmm0, ds :XX
movsd [d] , xmm0

Fig. 3. Snippet Code for the Assignments of Different Types

variables the same type int32 t. Again, most of these results
are over-conservative or incorrect.

One may note that these assignments for the variables of
different types are compiled into different instructions, namely,
mov, movss and movsd for int, float and double, respectively.
Accordingly, one may want to improve the program analysis
approaches by adding three new rules to infer those three dif-
ferent types corresponding to those three different instructions.
However, this will not work since the instruction mov (movsd
resp.) is not only used for the type int (double resp.). Even
if it works, there are too many such kinds of instructions and
types, therefore it would be difficult to figure out the possible
reasonable rules. For instance, in the x86 instruction set, there
are more than 30 kinds of mov instructions.

Another challenge in binary type inference, as discussed in
[13], is from equivalent instruction sequences. The equivalent
instruction sequences do not share the same type information
under the typing rules. So the type information obtained from
an instruction sequence can be lost in another equivalent in-
struction sequence. For example, both of the single instruction
“and 0XFFFFFFFC, [ebp]” and the instruction sequence “not
[ebp], or 0X3, [ebp], not [ebp]” produce the same result, that
is, to align a pointer by clearing its lowest two bits. But for
the second sequence, the type of [ebp] (i.e., a pointer type) is
lost, after applying on it the not operation twice.

Generally, the related instructions of a variable reflect how
this variable is stored, interpreted, and manipulated. For in-
stance, just as shown in Figure 3, variables of different types
can have different instructions. Motivated by “duck typing”,
in which the type of a variable is determined by its features
and properties rather than being explicitly defined, we take the
related instructions of a variable as its feature, and learn the
most possible type from the feature for the variable. Consider
the program base64 given in Figure 1 again. The related
instructions of the memory byte [ebp-1] is the set “{mov ,
0; mov , 1; movzx eax, }”, which is most likely to be
a feature of the type bool, where denotes the concerning
variable. Therefore, we infer for the variable [ebp-1] the type
bool. Similarly to the variables of the program given in Figure
3. Note that movsd may be a feature of double, but not all
of them belong to double. Moreover, we believe that the
equivalent instruction sequences can be treated as different
possible features of the same type. For example, the single
instruction “and 0XFFFFFFFC, [ebp]” and the instruction
sequence “not [ebp], or 0X3,[ebp], not [ebp]” could be two
possible patterns of pointer types.

Fig. 4. Framework of Our Approach

III. APPROACH

We present our approach to learning types for binary code
in this section.

As discussed in Section II, our approach is to learn the
most possible type for the recovered variables from their
related instructions. Figure 4 shows the framework of our
approach, which consists of two main steps: (i) we first train a
classifier with types as levels from existing binaries with some
debugging information (marked by arrows with solid line),
and (ii) we then use this classifier to learn the most possible
types for new, unseen binaries (marked by arrows with broken
line). In detail, we first perform some analysis on binaries with
some debugging information to recover the possible variables
and extract the related features and types for these variables,
yielding a training data set. Based on the training set, we train
a classifier with types as levels via machine learning methods.
Next, we perform the similar analysis on stripped binaries
to recover the variables and extract their features. We then
learn the most possible types for these recovered variables,
using the trained classifier. To conclude, our approach involves
three tasks: (i) binary analysis; (ii) classifier training; (iii) type
learning.

In what follows, we describe the types we used in the
classifier and each task of our approach, using as an illustrative
example the program memchr, given in Figure 5, from C
runtime Library.

A. Types
The types we use in the classifier are the base types without

type quantifiers, namely, the labels we are learning in the
classifier are the set

L ={char, bool, short, int, float, double,
pointer, long long int, long double}

There are two reasons behind this decision: (i) the other types
can be composed from the base types, for instance, struct; and
(ii) too many levels may work against the classifier. Figure
6 gives the lattice for the types we are learning, where >
(? resp.) denotes that a variable can (cannot resp.) be any
type and there is a “pointer” starting from the type pointer to
the lattice itself, namely, the type lattice is level-by-level (see
the processing of pointer in Section III-D). This type lattice
describes the hierarchy and the distance of types, and will
be used to measure the precision of types (see Section IV).
Similar to TIE [6], we focus on the sizes of types such that
there are no subtype relations for types with different sizes,
for instance, short is not a subtype of int.

4

%% ASM Code S n i p p e t
sub 401000 pro c n e a r
.
l oc 401009 :
07 cmp dword p t r [ebp +10h] , 0
08 j z s h o r t loc 40103A
09 mov eax , [ebp +8]
10 movsx ecx , b y t e p t r [eax]
11 mov [ebp�44h] , ecx
12 mov edx , [ebp +0Ch]
13 mov [ebp�48h] , edx
14 mov eax , [ebp +8]
15 add eax , 1
16 mov [ebp +8] , eax
17 mov ecx , [ebp�44h]
18 cmp ecx , [ebp�48h]
19 j z s h o r t loc 40103A
20 mov eax , [ebp +10h]
21 sub eax , 1
22 mov [ebp +10h] , eax
23 jmp s h o r t loc 401009
loc 40103A :
24 cmp dword p t r [ebp +10h] , 0
25 j z s h o r t loc 401051
26 mov eax , [ebp +8]
27 sub eax , 1
28 mov [ebp +8] , eax
29 mov ecx , [ebp +8]
30 mov [ebp�44h] , ecx
31 jmp s h o r t loc 401058
loc 401051 :
32 mov dword p t r [ebp�44h] , 0
loc 401058 :
33 mov eax , [ebp�44h]
.
sub 401000 endp

%% C Code
char ⇤memchr (char ⇤buf , i n t chr , i n t c n t) {

whi le (c n t && ⇤buf ++ != c h r) cn t��;
re turn (c n t ? ��buf : NULL) ;

}

Fig. 5. Snippet Code of the Program memchr

Fig. 6. Type Lattice

Given a type t, we define its level as the number of the
(outermost) levels occurring in it, that is, level(t) is defined
as level(t0) + 1 if t is a pointer to t0, otherwise 0.

B. Binary Analysis
In this paper, we use the assembly code as an intermediate

representation for binaries, which can be obtained by any
disassembler such as IDA Pro. And we restrict our study to the
x86 instruction set on Intel platforms, though the techniques
presented here can be extended naturally to the others. Note
that, some existing binary analysis techniques or toolkits, such
as IDA pro [1], can be used here to recover variables from
binaries and/or to extract direct related instructions. But the
results may not suitable for our analysis for type learning, such
as the indirect related instructions and instruction proceeding.

So for practicability and for completeness, we presented the
analysis that are targeted for our type learning.

After compiling, variables of the high-level source program
and their type information are not included in the resulting
binary. Therefore, the first step is to recover the target variables
in the binaries. Since the types of variables are determined by
their features, the next step is to extract the related features,
namely, the related instructions of the recovered variables. In
order to use the features in a classifier, the last step is to
select the instructions that are the most representative and
frequently used as the feature indicators, and represent them as
a vector. In a word, our binary analysis consists of three steps:
(i) target variable recovery; (ii) related instruction extraction;
(iii) feature selection and representation. We present the detail
of each step in the following.

1) Target Variable Recovery: As shown in [14], variables
are abstractions of memory blocks, which are accessed by
specifying absolute addresses directly or indirectly through
address expressions of the form “[base + index ⇥ scale
+ offset]” in binaries, where offset and scale are integer
constants, and base and index are registers. Hence, to recover
the target variables in a binary is to identify the possible
memory blocks in it. Similar to (the first step of) Value-Set
Analysis (VSA) [14], we identify the target variables from
functions, global data and heap memory. Since every function
has its own stack frame to access to both function parameters
and local variables, we proceed this task function by function.
Function boundaries identification is an independent problem
of interest, which is not covered here. Existing disassemblers
or recent approaches [15]–[17] can identify the functions quite
correctly. Even if not, the whole program can be treated as a
single function.

Consider (the stack frame of) a general function. In CDECL
and STDCALL conventions, parameters and local variables are
always accessed through address expressions of the form “[ebp
+ offset]” and “[ebp - offset]”, respectively, where ebp is the
stack base pointer register2. While in FASTCALL convention,
the first two parameters are passed by the registers ecx and
edx, the other parameters and local variables are handled as
the same as the conventions above. In all the conventions,
the return values are passed by the register eax. So for each
function, we identify variables from its stack frame and the
data registers. Since data registers may be used multiply with
possible different types in a function, we also take different
uses of the same data register as different variables. For
simplicity, we only consider the data registers here. But they
are dependent. One can take some other registers into account
as well, such as ESI and EDI. At last, global memory blocks
and blocks in heap, which may be used by another function,
are also considered. For example, global variables are always
defined in the data or bss section, accessed by the address
expression “ds:offset”, while blocks in heap are accessed by
the address expressions involving general registers, such as
“[eax +/- offset]”.

2Under some higher optimization options, the ebp register is often used to
store variables, which will be treated as “[ebp - 0]” (or “[ebp+0]” if one likes)
in our setting.

5

Algorithm 1 shows the procedure for variable recovery,
which takes a function in ASM as input, and returns a set
of possible variables. The algorithm starts with an empty set
V (Line 1). Then it marks different uses of data registers
(i.e., eax, ebx, ecx and edx) in the function as Static Sin-
gle Assignment Form (SSA) does (Line 2), which is given
in Algorithm 2. Finally, the algorithm proceeds with each
instruction to collect the variables (Lines 3-16): Lines 4-6
and Lines 7-9 respectively handle the variables in stack frame
and data registers used only in the target function, where
vf denotes that the target variable v only belongs to the
function f , regn denotes the n-th definition (see below) of
data register reg and reg 2 {eax, ebx, ecx, edx}. While Lines
10-12 handle the other possible variables, where varAddr
denotes any other possible block, such as the global memory
blocks accessed by the address expression “ds:offset” or the
blocks in heap accessed by “[reg +/- offset]”. Note that, due
to compiler optimisation, multiple different local variables
may be compiled into a simple stack location, which is not
considered here.

Algorithm 1 Variable Recovery Algorithm varrec(f)

Input: a target function f
Output: the possible variable set V

1: V = ;
2: D = regmark(f)
3: for each instruction i 2 f.b do
4: if [ebp ± offset] 2 i then
5: V = V [{[ebp ± offset]f}
6: end if
7: if regn 2 D(i).u [D(i).d then
8: V = V [{regfn}
9: end if

10: if varAddr 2 i then
11: V = V [{varAddr}
12: end if
13: end for
14: return V

We say an instruction i is a use (resp. a definition) of a data
register r if i reads data from (resp. writes data into) r. For
example, the instruction “add eax 1” reads data from eax first
and then writes data back to eax, so it is a use as well as a
definition of eax. In particular, a function call is a definition
of eax, since the return value is always stored in it3. If any
other register is not saved by the function, then the function
call is also a definition for it.

Algorithm 2 shows the procedure for register marking,
which takes a function f as input and returns a marked
mapping for instructions. The algorithm first builds a control
flow graph for function f (Line 1). Then it initializes each
node of the graph with the empty definition set and use set
(Lines 2 � 4), and set the number of current definitions for
each register as 0 (Line 5). After that, the algorithm starts
from the entry nodes of graph with the zero definitions (Line

3It is possible that the return value is stored in the other registers, which
should belong to the ones used by the exit node.

6), and traverses over the graph to collect the definition and
use information (Lines 7�23). That is, for each node n in the
queue and each register r, the algorithm collects the definition
and use information, according to n and r. In detail, if n
is a use of r, then it updates the use information of n with
the current definition of r (Lines 10 � 12), where regn is
the same to the one in Algorithm 1; and if n is a definition
of r, then it increases the number of definitions of r and
updates the current definition of r, which is added into the
definition information of n (Lines 13�16). If the information
is different from the original one (Line 18), that is, there are
some definitions of registers are fresh with respect to n, then
the algorithm propagates the current definitions of registers
to all the successors of n and enqueue them in the queue
(Line 18�22). This marking procedure is essentially a classic
definition-use and use-definition analysis, wherein only the
data registers are considered.

Algorithm 2 Register Marking Algorithm regmark(f)

Input: a target function f
Output: the marked mapping D

1: let cfg be the control-flow graph of f
2: for each node n 2 cfg do
3: D(n).u = ; and D(n).d = ;
4: end for
5: num = [eax 7! 0, ebx 7! 0, ecx 7! 0, edx 7! 0]
6: enqueue the entry node e and num into queue q
7: while q 6= ; do
8: (n, cur) = dequeue q and (ou, od) = D(n)
9: for each r 2 {eax, ebx, ecx, edx} do

10: if n is a use of r then
11: D(n).u = D(n).u [{rcur[r]}
12: end if
13: if n is a definition of r and D(n).d = ; then
14: num[r] + + and D(n).d = {rnum[r]}
15: cur[r] = num[r]
16: end if
17: end for
18: if (ou, od) 6= D(n) then
19: for each successor n0 of n do
20: enqueue (n0, cur) into q
21: end for
22: end if
23: end while
24: return D

Let us consider the example memchr given in Figure 5.
Table I lists the recovered variables in the stack frame, which
consist of 3 parameters (which conform to the declarations
in the C code) and 2 more local variables (which are due
to the low-level instructions and are used to temporarily
store the values of the variables *buf and chr, respectively).
Moreover, there are 9 different definitions of eaxs (i.e., eax0
- ebx8), 4 different definitions of ecxs (i.e., ecx0 - ecx3), and
2 different definitions of edxs (i.e., edx0 - edx1). It seems
that there are too many variables for data registers, but they
can be reduced by definition-use chains (see the next section).
Please note that compiling with a different compiler or with

6

TABLE I
VARIABLES IN THE STACK FRAME OF memchr

Variable Expression Variable Expression
localVar1 [ebp-48h] localVar2 [ebp-44h]

parameter1 [ebp+8] parameter2 [ebp+0Ch]
parameter3 [ebp+10h]

09 mov eax , [ebp +8]
14 mov eax , [ebp +8]
16 mov [ebp + 8] , eax
26 mov eax , [ebp +8]
28 mov [ebp + 8] , eax
29 mov ecx , [ebp +8]

Fig. 7. Instructions Using [ebp+8] Directly in memchr

different options may generate different assembly code and
thus different numbers of recovered variables.

2) Related Instruction Extraction: The next step of our
binary analysis is to extract for the recovered target variables
the related instructions from the binary code, which reflect
how the variables are stored, interpreted and manipulated, and
will be used as a feature of the variables when learning their
types.

A naive and simple solution is to extract for a variable the
instructions which use it directly. Take the variable [ebp+8] of
the program memchr for example. Figure 7 lists the instruc-
tions which use [ebp+8] directly. We can see that all these
instructions are a move operation, which can be used by any
type of variables. So these instructions are not enough for us to
learn a type for it. Nevertheless, an instruction of a variable in
high-level code is always compiled into several instructions in
low-level code, some of which may not use the corresponding
variable directly and thus are dropped by the simple solution.
For instance, as shown in the program base64 in Figure 1, the
instruction “if (decode)” in C is complied to 2 instructions in
ASM code with the variable [ebp-1], one of which uses [ebp-
1] directly (i.e., “movzx eax, byte ptr [ebp-1]”), while the
other does not (i.e., “test eax, eax”). Obviously, the second
instruction is much more representative for the type bool and
should be considered as well.

On the other hand, as mentioned above, there may be too
many variables for different definitions of the data registers,
namely, eax, ebx, ecx and edx. This is due to the fact that
these data registers are usually used as an intermediary to
temporarily store data, and that at different time they may
store different data of different types. So not all of them
are interesting. Moreover, according to the classic type sys-
tem [18], when a variable is assigned by another variable
or an arithmetical expression involving with another variable,
the type of assigning variable is a subtype (denoted by )
of the one of the assigned variable. This indicates that the
behaviours belonging to the assigned variable also belongs
to the assigning variables. In particular, limited by our type
lattice, both variables have the same type, as justified by
Lemma III.1. Therefore, we collect these instructions of both
variables together and learn for the assigning variable a type,
which will be considered as the type for the assigned variable
as well, based on the merged instructions.

Lemma III.1. Let t, s be two types in L. Then t  s ()
t = s.

Proof. Since any type in L is not a subtype of another type,
the only solution to a subtype relation is the type itself.

In detail, we make use of definition-use chains on these data
registers to extract more interesting instructions: the uses of
the data register, which is defined by a variable, are also con-
sidered as the uses of the variable. For instance, the instruction
“test eax, eax” is considered as an instruction related to the
target variable [ebp-1] in the program base64 as well, since
it is a use of eax, which is defined by [epb-1]. And we only
need to learn for the variable (e.g., [epb-1] in base64) a type,
which will be considered as the type for the corresponding
data register (e.g., eax in base64) as well. This benefits to not
only extracting more interesting instructions for a variable but
also reducing the number of variables for different definitions
of data registers. Indeed, only the initialised registers (e.g.,
the parameters) and the ones used by the exit node (e.g.,
the return variables) are interesting. Likewise, definition-use
chains through function calls are also considered to extract as
much interesting information as possible. Please note that the
variable number for different definition of data registers can
be reduced during variable recovery4. But in order to better
explain instruction extraction, we present it here.

The procedure for instruction extraction is shown in Algo-
rithm 3, which takes a target variable as input, and returns its
related instruction set. The algorithm analyses the function f
if the target variable belongs to f only, otherwise the whole
program (Lines 2-6). Then for each function, the algorithm
marks the definition-use chains, which is recorded in D (Line
8). At last, for each instruction, if it involves the target variable
v, then it is added to the related instruction set (Lines 10-
11). Moreover, if it is a definition of a data register, then the
set of instructions that are related to this register is collected
as well (Lines 12-13). In addition, our extraction considers
the inter-procedural analysis: (i) if the current instruction calls
a function f 0 and v is one of the arguments, then we also
extract the related instructions for the corresponding parameter
vf

0
of f 0 (Lines 16-18); and (ii) if v is (stored in) the return

variable of f , then for each function f 0 that calls f , the related
instructions for the variable (i.e., eax) in f 0 that stores the
return value from f is extracted (Lines 20-24).

Take the recovered variable [ebp+8] in the program memchr
for example again. Its related instruction set is given in Figure
8, where the number n following a data register corresponds
to the n-th definition identified during the variable recovery.
Compared with the instructions listed in Figure 7, there are 4
more interesting instructions, which are collected due to the
definition-use chains of these data registers (denoted by “use
of ” followed by a definition of a data register).

3) Feature Selection and Representation: According to the
official document of the x86 instruction set [19], different
instructions have different usages. Hence based on the us-
ages, we perform some pre-processing on these collected
instructions. Firstly, we notice that not all the instructions

4BITY is implemented in this way.

7

Algorithm 3 Instruction Extraction Algorithm insext(v)

Input: a target variable v
Output: the related instruction set I

1: I = ;
2: if v 2 f then
3: F = {f}
4: else
5: F = the set of all functions
6: end if
7: for each function f 2 F do
8: D = regmark(f)
9: for each instruction i 2 f do

10: if v 2 i or v 2 D(i).u then
11: I = I [{i}
12: for regn 2 D(i).d do
13: I = I [insext(regn)
14: end for
15: end if
16: if i calls function f 0 and v is an argument then
17: I = I [insext(vf

0
)

18: end if
19: end for
20: if v is (stored in) the return variable of f then
21: for f 0 calling f do
22: I = I [insext(eaxf 0

f)
23: end for
24: end if
25: end for
26: return I

09 mov eax , [ebp +8] %% d e f o f eax1 by [ebp +8]
10 movsx ecx , b y t e p t r [eax] %% use of eax1
14 mov eax , [ebp +8] %% d e f o f eax2 by [ebp +8]
15 add eax , 1 %% use of eax2 , d e f o f eax3 by eax2
16 mov [ebp + 8] , eax %% use of eax3
26 mov eax , [ebp +8] %% d e f o f eax6 by [ebp +8]
27 sub eax , 1 %% use of eax6 , d e f o f eax7 by eax6
28 mov [ebp + 8] , eax %% use of eax7
29 mov ecx , [ebp +8] %% d e f o f ecx3 by [ebp +8]
30 mov [ebp�44h] , ecx %% use of ecx3

Fig. 8. Related Instructions of [ebp+8] in memchr

are of interest to type learning. For instance, the instructions
push and pop are usually used by the stack, instead of by
any variable. Secondly, different operands may have different
meanings, so we distinguish between these two operands
in a dyadic instruction. For instance, the two operands of
the instruction mov represent the source and the destination
respectively, which are clearly different. Thirdly, we make
abstractions on some operands, since they always lead to
too many instructions: (i) we abstract the data registers with
sizes, due to their interim uses; and (ii) we abstract immediate
numbers into 0, 1 and Other, the first two of which are always
used by the type bool. Fourthly, we also take the circumstances
where the instructions are used into account. Considering the
instruction mov again, using it with data registers of different
sizes offers us different meaningful information. Its typical
usage patterns we consider are given in Table II, where Regn

TABLE II
TYPICAL USAGE PATTERNS OF MOV

mov Reg8, mov , Reg8 mov Reg16, mov , Reg16
mov Reg32, mov , Reg32 mov , 0 mov , 1
mov , Other mov varAddr, mov , varAddr

denotes a data register with size n, denotes a concerning
variable, and varAddr denotes a memory address (i.e., another
variable).

There are more than 600 instructions, but not all the
instructions are representative or widely used. Therefore, using
the well-known scheme Term Frequency-Inverse Document
Frequency (TF-IDF) [20], we perform a statistical analysis
on the dataset, which consists of source code from textbooks
and real-world programs. According to the results, we select
the top N representative and frequently used instructions as
the feature indicators. Theoretically, the more instructions,
the better. While in practice, we found 100 instructions are
enough.

In addition, some other useful information for type inference
are considered as well. Firstly, the memory size is very helpful
for type inference, so we also take it into account as a feature if
we can identify it. Secondly, when the type of a called function
is known, especially for system functions, if a variable is one
of its arguments, then we can infer for the variable a type
easily, that is (a subtype of) the type of the corresponding
parameter, according to the rule for function calls in classic
type system. Therefore, in Lines 16-18 of Algorithm 3, if the
type of f 0 is known, we represent the related instructions of
vf

0
as one feature “being an argument of t”, where t is the

type of vf
0
. In practice, we can use another feature “being the

n-th argument of f” for a system function f to avoid finding
the type of f . Likewise, Lines 20-24 could be simplified as
“being the return of t” or “being the return of f”.

Finally, similar to information processing, we would like
to encode the selected features of variables into vectors,
where only the numbers of times the selected instructions are
performed on the target variables are considered, leaving the
orders out of consideration. That is, we represent variables
as vectors, which consist of the frequencies of the selected
instructions and the extra useful information. Formally, a
representation of a variable is a vector of the form:

v = [t1 : x1, t2 : x2, . . . , tn : xn]

where n is the number of features, ti is a feature term, and xi is
the value of feature term ti. Note that ignoring the instruction
order can give us a simple and easy model, but it may reduce
the precision of the model if there are two different types with
different behaviour patterns such that these patterns share the
same instruction set.

Take the variable [ebp+8] of the program memchr for
example, whose related instructions are given in Figure 8. The
representation vector of [ebp+8] is given in Table III, where
the left hand side shows the vector of the specific instructions
before proceeding, while the right hand side gives the vector
of the abstracted instructions after proceeding, and only the
nonzero features are listed. Note that “mov eax, ” and “mov

8

TABLE III
REPRESENTATION OF [EBP+8]

Before Proceeding After Proceeding
Feature Value Feature Value
add , 1 1 add , 1 1

mov eax, 3 mov Reg32, 4
mov ecx, 1 merged to “mov Reg32, ”

mov [ebp-44h], 1 mov varAddr, 1
mov ,eax 2 mov , Reg32 2

movsx ecx, [] 1 movsx Reg32, [] 1
sub , 1 1 sub , 1 1

Size 32 Size32 1

ecx, ” are merged together, since both eax and ecx are data
registers of 32 bits.

C. Classifier Training

In our approach, the classifier is trained by supervised
learning. So we need a labeled dataset. To the end, we
compile a dataset of C programs with debugging support
and then extract the related information (i.e., variables, types,
and features) from the compiled binaries, yielding a training
set. Let V be the feature space for all possible vectors. Our
classifier training problem is expressed as: given a labeled
dataset D0 = {(v1, l1), (v2, l2), . . . , (vm, lm)}, the goal is to
find a classifier C : V ! L that minimizes the sum of the
distances of all the variables, namely,

argminC

X

(v,l)2D0

d(C(v), l) (1)

where m is the number of variables, vi is the feature vector
of a variable, li 2 L is the corresponding type of vi, and d is
the distance function on types. Similar to TIE [6], we define
the distance function d as the distance between them in our
lattice:

d(s, t) =

8
><

>:

0 s = t

1 (half maximum height) s, t are pointer
2 (maximum height) otherwise

Note that, similar to Elwazeer et.al.’s work [4], we can use
the radio min(level(s), level(t))/max(level(s), level(t)) for
pointers in theory, but in practice we consider only 3 levels
for pointers, so we use the half here. Our classifier C aims to
find the most possible type for a variable, so we define C as

given a variable v, C(v) = argmaxl2L P (v, l)

where P (v, l) is the probability that the variable v is assigned
by the type l. Without loss of generality, the probability P (v, l)
can be encoded as follows:

P (v, l) = expScore(v,l)/
X

l2L

expScore(v,l)

where Score(v, l) is a function that returns the score of
assigning the type l for the variable v. Assignments with higher
scores are more likely than assignments with lower scores.
Since we learn types from the related features of variables,

we express the Score function as a composition of a sum of
n feature functions Fi associated with the related weights wi:

Score(v, l) =
nX

i=1

wi ⇥ Fi(xi, l) = ~w ⇥ ~F (v, l)

where v = [t1 : x1, t2 : x2, . . . , tn : xn], ~w is a vector of
weights wi, and ~F is a vector of feature functions Fi. There are
several solutions to the definition of ~F , for example, Kullback-
Leibler divergence. But here we reuse the TF-IDF values,
computed in Section III-B3, to define the feature function as
follows:

Fi(xi, l) = xi ⇥ idf l
ti

where idf l
ti is the IDF value of feature term ti with respective

to the type l. The remaining problem is to find a vector ~w
of weights such that Condition (1) is satisfied, which can be
solved by various algorithms of machine learning, such as
decision tree, k-nearest neighbor, native bayes, random forest
and support vector machine. We have tried these algorithms
to solve our training problem in our implementation. We have
also carried out several experiments with these algorithms
and have found that the classifier trained by Support Vector
Machine with a linear kernel and Random Forest with 10 gini
trees perform the best (more details will be given in Section
IV).

D. Type Learning
Once it is trained, the classifier C can be used to learn types

for new, unseen binaries. Intuitively, the solution is to return
for a given variable v the type whose probability is the highest
one as its definition, that is

argmaxl2L P (v, l).

Take the variable [ebp+8] of the program memchr as an
example again. Its feature instruction set contains “mov Reg32,

; movsx Reg32, []” (to read data from an address expres-
sion), “mov Reg32, ; add , 1” (to increase the address
expression), and “mov Reg32, ; sub ,1” (to decrease the
address expression), which are the typical usages of the type
pointer. Accordingly, the probability of P ([ebp+8], pointer)
gets the highest score, and thus the most possible type the
classifier learns is pointer. Let us consider the variable decode
in the program base64 given in Figure 1. As discussed in
Section II, its feature instruction set (i.e., “mov , 0; mov ,
1; movzx Reg32, ; test , ”) is one of the typical usages
of the type bool, so our classifier will learn bool as the most
possible type.

1) Composite Types: This section presents how to handle
composite types, namely pointer and struct, using a combina-
tion of machine learning and program analysis techniques.

Pointer. For a higher accuracy, we handles pointer level-by-
level as shown in our type lattice in Figure 6. This is because
we would like (i) to learn not only the pointer type itself but
also the type that the pointer type points to, which may be a
pointer type as well; and (ii) to handle the multi-level pointers.

We say a variable is indirect if there exist at least one other
variable of pointer type pointing to it.

9

In detail, our approach proceeds as follows:
1) Once a variable v is learnt to have type pointer by our

classifier, our approach first tries to identify any variable
that the pointer variable points to, using a points-to
analysis, which is motivated by Brumley and Newsome’s
work [21] and shown in Algorithm 4.

2) If such indirect variables exist, the approach then collects
the related features for these newly recovered variables
and continues to learn a (next-level) type t for all these
variables with the classifier. Similar to definition-use
chain (i.e., Lemma III.1), we argue that the variables
pointed to by the same variable share the same type.
One can think that the type for an indirect variable is a
vote, so t is the type which gets the most votes.

3) At last, the type for the variable v is a pointer to t if
there exists at least one indirect variable, otherwise a
pointer (to any type).

Our approach can handle pointers with any levels in theory
(and thus may not terminate). But in practice, we have found
that up to 3 levels are enough.

Algorithm 4 shows our points-to algorithm, which takes
a target variable as input and returns the set of possible
variables pointed to by the target variable. The idea is that
whenever a variable is loaded or stored by the memory location
addressed by the target variable, the variable is pointed to by
the target one (Lines 9-12). Transitivity of variables is taken
into account (Lines 13-15). The proceeding above is quite
similar to the IDB predicates in [21] without the rules for
expression operators, since our analysis considers the possible
variables rather than the (address) values. In addition, our
analysis considers the inter-procedural situations (Lines 16-
24).

Compared to our conference version [11], there are two
minor differences for the processing for pointer type: one
is to take some possible offsets into account, that is, the
address pattern ⇤(v + offset) in Line 11; and the other
is to extend transitivity of variables from data registers to
any possible variables, that is v0 in Line 13 can be any
possible variable. Both of them enable us to find more indirect
variables. Theoretically, the more the indirect variables, the
more precise the learnt type. But in our experiments, we found
the results are almost the same. The reason is that (1) when
there is an indirect variable with an offset, there always exists
another indirect variable without an offset, and transitivity of
variables are always passed by data registers; (2) a (correct)
type can always be learnt from some indirect variables (e.g.,
the ones found by the original version), since they share the
similar instructions. However, this extended algorithm benefits
struct recovery very well: it enables us to find more fields (see
the struct recovery).

Let us carry on with the variable [ebp+8] of the program
memchr. In Section III-D, we have learnt for the variable
[ebp+8] the most possible type pointer. So our approach
goes on to identify any possible indirect variable, yielding
the variable set “{byte ptr [eax], ecx1}”. Then our approach
extracts the following feature vector for it:

[mov Addr, : 1; movsx Reg32, : 1; Size8: 1]

Algorithm 4 Points-to Algorithm point to(v)

Input: a target variable v
Output: the possible points-to variable set V

1: V = ;
2: if v 2 f then
3: F = {f}
4: else
5: F = the set of all functions
6: end if
7: for each function f 2 F do
8: for each instruction i 2 f do
9: if i is v0 = ⇤v or ⇤v = v0 then

10: V = V [{⇤v, v0}
11: else if ⇤v 2 i or ⇤(v + offset) 2 i then
12: V = V [{⇤v}
13: else if i is v0 = v or v = v0 then
14: V = V [point to(v0)
15: end if
16: if i calls function f 0 and ⇤v is an argument then
17: V = V [{pf

0

⇤v}
18: end if
19: end for
20: if ⇤v is (stored in) the return variable of f then
21: for f 0 calling f do
22: V = V [{eaxf 0

f }
23: end for
24: end if
25: end for
26: return V

which covers the data move with sign extension. There are
two types with 8 bits, that is, char and bool. According to the
known binaries, the feature above more likely belongs to char
than to bool. Therefore, the final type for the variable [ebp+8]
is a pointer to char, which is exactly the same as the one in
the high-level code.

Struct. Another common composite type is struct, which
consists of several possible different types. For example,
Figure 9 shows a definition of struct Point in C language,
which consists of two components of type int. Let us consider
two simple functions that perform on the struct Point. The first
one func1 defines a variable of type struct Point and initializes
all its members, while the second one func2 does the similar
operations, except that the variable is defined with type struct
Point pointer. Figure 9 also gives the snippet assembly codes
of these two functions. From the assembly codes, we can see
that the struct Point variable in func1 is encoded into two
memory blocks [ebp-8] and [ebp-4] in statck, corresponding
to two components of the struct Point. In other words, this
struct variable is compiled into two different variables and thus
the struct information is lost. While in func2, the variable of
type struct Point pointer is represented as a single block [ebp-
8] in stack, and through this block, two other blocks [eax]
and [eax+4] (i.e., [[ebp-8]+0] and [[ebp-8]+4]) in heap can be
accessed, which corresponds to two components of the struct
Point. Compared to func1, it is easier to recover the struct

10

s t r u c t P o i n t {
i n t x ;
i n t y ;

} ;
void func1 () {

s t r u c t P o i n t p ;
p . x = 2 ;
p . y = 4 ;

}
void func2 () {

P o i n t⇤ p = (P o i n t ⇤)
ma l l oc (s i z e o f (P o i n t)) ;

p�>x = 2 ;
p�>y = 4 ;

}

func1 proc near
.

mov dword ptr [ebp�8] , 2
mov dword ptr [ebp�4] , 4
.

f unc1 endp

func2 proc near
.

mov eax , [ebp�8]
mov dword ptr [eax] , 2
mov eax , [ebp�8]
mov dword ptr [eax +4] , 4
.

f unc2 endp

Fig. 9. Snippet Code for simple struct programs

information from func2.
In this paper, we only consider the structs that are ac-

cessed indirectly (i.e., through a pointer), since structs that
are accessed directly are always compiled into several different
variables corresponding to their components, which is difficult
to recover. That is, the form of struct type we learn is of
the form *struct. So the first problem is to distinguish struct
pointer from the other pointers, which is also a classifier
problem. But, instead of the machine learning methods used
above, our solution here is to take advantage of the points-
to analysis above and to seek the common pattern used for
*struct in low-level code: the indirect access pattern [base +
offset] with the same base (i.e., variables pointed to by the
same variable). Arrays can be handled in similar way.

Our struct recovery proceeds as follows:
1) Once a variable v is learnt to have type pointer by our

classifier, assume that the variable set it points to is V .
Then our approach tries to collect the variables whose
bases are in V , yielding a variable set V 0

2) If |V 0| > 1, we infer that the type of v is a struct pointer.
Then we continue to learn a type ti for each variable
vi in V 0. After that, we order the variables in V 0 and
construct the following struct type:
struct anyname {
offset1 : t1
...
offsetn : tn

}
where there exists a basei 2 V such that [basei +
offseti] 2 V 0.

3) If |V 0|  1, we proceed as the pointer recovery.
Consider func2 in Figure 9 again. The type of [ebp-

8] is learnt to be pointer, according to its instructions. By
applying the points-to algorithm, we get the points-to variable
set V = {[eaxn], [eaxn+1]}, where eaxi denotes the i-th
definition of eax in func2. Note that, without the extension of
points-to algorithm, [eaxn+1] cannot be identified. Based on
V , we found two variables that share the same base: [eaxn+0]
and [eaxn+1 +4], and both of their types are learnt to be int.
According, we obtain the following struct type:
struct anyname {
0 : int
4 : int

}

IV. EXPERIMENTS

We have implemented our approach in a prototype named
BITY, wherein we use the tool IDA Pro [1] as our front end to
disassemble binaries and scikit-learn [8] to implement various
classifiers. Using BITY, several experiments are conducted
to evaluate our approach. Firstly, several cross-validation ex-
periments are conducted to evaluate how well the classifiers
trained by various machine learning methods would perform.
Secondly, to evaluate our tool BITY, we conduct experiments
to compare BITY against Hex-Rays and Snowman, which
recover types via program analysis. Thirdly, we also conduct
experiments to compare BITY against EKLAVYA, a recent
tool that can learn types for function parameters from binaries
via machine learning. Fourthly, experiments on evaluating
the scalability of BITY are also conducted. Finally, as an
immediate application, we conduct experiments to check the
viability of using the type information BITY learns to help
malware detection.

The experiments were conducted on a personal computer
with Intel Processor i5-4590 (3.30GHz) and 8GB memory.

A. Training Dataset
For a high precision, we consider a training dataset that

should contain different possible usages of different types.
For that, we collect binaries with debug information obtained
from programs that are used in teaching materials and from
commonly used algorithms and real-world programs. Pro-
grams of the first kind always cover all the types and their
possible usages, in particular, they demonstrate how types and
their corresponding operations are used for beginners. While
programs of the second kind reflect how (often) different types
or usages are used in practice, which help us to select the
most possible type. In detail, our training dataset consists of
the binaries obtained from the following programs via MSVC
and gcc:

• Source codes of the C programming language (K&R);
• Source codes of basic algorithms in C programming

language [22];
• Source codes of commonly used algorithms [23];
• C Runtime Library;
• Some C programs collected from github randomly.

B. Performance of Different Classifiers
As mentioned in Section III-C, there are various machine

learning algorithms to train our classifier. For that, we conduct
a series of experiments to compare the performance of various
classifiers here, wherein 5-fold cross validation is performed.
First of all, the dataset is divided into 5 equal folds randomly,
each of which is taken as the testing set and the others as
the training set. Then based on the training set, we train the
classifier using a machine learning algorithm. At last, we test
the classifier on the testing set. The machine learning algo-
rithms we use here are: decision trees (DT for short), where the
metrics Gini impurity and information gain are used; k-nearest
neighbour (KNN for short), where the value of k ranges in
{1, 3, 5, 7}; native Bayes (NB for short), including the models

11

TABLE IV
RESULTS OF DIFFERENT CLASSIFIERS

Classifier Precision Recall F1
DT-Gini 0.9457 0.9447 0.9444
DT-Gain 0.9434 0.9418 0.9419
1-KNN 0.9462 0.9437 0.9432
3-KNN 0.9390 0.9368 0.9364
5-KNN 0.9337 0.9329 0.9325
7-KNN 0.9296 0.9289 0.9384
GNB 0.7661 0.5775 0.6002
MNB 0.9172 0.9072 0.9052
BNB 0.9240 0.9299 0.9264
SVM-Linear 0.9466 0.9437 0.9432
SVM-RBF 0.9440 0.9427 0.9425
SVM-Sigmoid 0.6619 0.5548 0.4304
RF-(10, Gini) 0.9461 0.9457 0.9453
RF-(10, Gain) 0.9454 0.9447 0.9444

Gaussian naive Bayes (GNB for short), multinomial naive
Bayes (MNB for short), and Bernoulli naive Bayes (BNB
for short); support vector machine (SVM for short), where
the linear function kernel, the radial basis function kernel
(RBF for short) and the sigmoid function kernel are used; and
random forest (RF for short), which consists of 10 decision
trees. The performance measures we use to validate the results
quantitatively are as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2 ⇤ Precision ⇤ Recall
Precision + Recall

=
2 ⇤ TP

2 ⇤ TP + FP + FN

The experimental results are shown in Table IV. From the
results we can see that most of the classifiers, except for GNB
and SVM with sigmoid kernel, work quite well: the precision,
recall and F1-measure are all over 90%. In particular, SVM
with a linear kernel obtains the best precision (94.66%), while
RF with 10 Gini trees gets the best recall (94.57%) and
F1-measure (94.53%). One of the main reasons for RF to
outperform others is that RF is an ensemble learning method
which may correct the decision tree’s habit of overfitting to the
training set. While SVM with a linear kernel tries to transform
the original input set into a high-dimensional feature space
by using a linear kernel function, and then construct an n-
dimensional hyperplane that optimally separates the variables
into categories. Theoretically, we can obtain a correct classifier
if the dimension n is large enough. So we suggest to use the
classifier trained by SVM with a linear kernel.

C. Comparison against Hex-Rays and Snowman
This section presents the experiments to compare BITY

against Hex-Rays (v2.2.0.15), which is a plug-in of the com-
mercial tool IDA Pro [1], and Snowman (v0.1.0), which is an
open source C/C++ decompiler [9].

In order to quantitatively validate the result types recovered
by different tools, we extend the distance function d given in
Section III-C such that it still works on the types recovered

Fig. 10. Type Lattice for Hex-Rays and BITY

by Hex-Rays and Snowman. For that, we extend the lattice in
Figure 6 with the types recovered by these two tools. Figure
10 gives the extended lattice, where Hex-Rays and Snowman
consider all the types except > and ?, while BITY considers
only the types in bold. Note that the types recovered by
Snowman are similar to Hex-Rays but with different names,
for example, Snowman uses int32 t for int and uint32 t for
unsigned int. It seems that the distance function d can be easily
and naturally extended on this new extended lattice. However,
due to the types we imported for Hex-Rays and Snowman,
there are more options for us to predict for a variable. For
example, we can predict the types dword, >, or float for a
variable of type int. Clearly, with respect to the type int, the
type dword is better than the type >, and both of them are
better than the type float. But the original distance function d
does not tell us the differences among these three types. So to
express the differences and validate the results more precisely,
we borrow the notation compatible types from TIE [6]. Given
two types, if one type is a subtype of the other one, we said
they are compatible. Now the distance function d between two
types t, s is extended as follows:

• if t and s are pointer to t0 and s0 respectively, then d(t, s)
is defined as the half of the maximum hierarchy height 2
multiplied by 1, 0.5 and 0, according to whether t0 and s0

are incompatible, compatible, or the same, respectively;
• otherwise, d(t, s) is defined as the number of hierarchies

between t and s in the top-level lattice if they are
compatible, otherwise the maximum hierarchy height 4.

For instance, both d(⇤dword, ⇤int) and d(dword, int) are 1,
while the distance d(⇤dword, int) is 4. Note that, compared
with the original one, the extended distance function returns
a higher value if BITY gives a wrong answer.

1) Experiments on Coreutils: The first test programs we
used for comparison are from GNU Core Utilities, namely,
coreutils-v8.4, which is a benchmark used for evaluation by
several existing work [3], [6], [24]. The experiments proceed
as follows: (i) The test programs are compiled into binaries
with debugging support, from which the type information
is extracted and used as a reference for the tools. (ii) We
perform our tool BITY on the stripped binaries, obtained from
the test programs by compiling without debugging support,
to identify the target variables in stack and learn for them
types, and compare the types learned by BITY against the
reference types. (iii) We use Hex-Rays to decompile the

12

stripped binaries, and compare the recovered types against the
reference types. (iv) Similar to Hey-Rays, Snowman is used
as well. But due to the different front-ends, the corresponding
relation between the variables recovered by our tool and the
ones by Snowman is unclear. So we have to analyse the
decompiled code by Snowman to build this correspondence
manually. And it is more difficult for global variables to figure
out this correspondence than local variables. Due to time
limitation, we perform only on 42 programs in coreutils and
consider only local variables and parameters for comparison.

As pointed out in [25], we also found that there are some
duplicate functions in coreutils, so we eliminate some common
functions, such as usage and emit functions. Moreover, during
experiments, we only counted the functions whose related
types that can be recovered by all the tools. The experimental
results are given in Table V, where Variables is the number of
the target variables, R, C and F are the number of variables,
whose types are respectively recovered correctly, compatibly
and incorrectly, and P is the percentage of the correct types
and the compatible types, both of which together are called
proper types, among all the types. From the results, we can see
that (i) BITY can learn 80% above proper types for most of the
programs (i.e., 44 programs among 45 ones), while Hex-Rays
and Snowman can respectively recover 26 and 19 programs
with 80% above proper types; (ii) On the whole, among
the types learned by our tool BITY, 1356 (58.12%) types
are correct, 729 (31.25%) types are compatible, 2085 types
(89.37%) in total are proper; While Hex-Rays recovers 1276
correct ones (54.69%) and 589 compatible ones (25.25%), in
total 1865 proper ones (79.94%); and Snowman recovers 995
correct ones (42.65%) and 713 compatible ones (30.56%), in
total 1708 proper ones (73.21%); (iii) On average, the proper
accuracy rating of BITY, Hex-Rays and Snowman are 90.32%,
82.96% and 74.28%. In conclusion, BITY performs better
than Hex-Rays and Snowman, all in terms of correct types,
compatible types, or proper types.

According to the reference type information, we have found
that there are 1021 variables that are typed by pointer. Table VI
gives the type results recovered for these variables by our tool
BITY, Hex-Rays and Snowman, where the notation is the same
as the ones in Table V. Among the types learned by BITY, 444
(43.49%) ones are correct, 397 (38.88%) ones are compatible,
and in total 841 (82.37%) ones are proper. While for Hex-
Rays, 397 (38.88%) ones are correct, 203 (19.88%) ones are
compatible, and in total 600 (58.77%) ones are proper; and for
Snowman, 238 (23.31%) ones are correct, 399 (39.08%) ones
are compatible, and in total 637 (62.39%) ones are proper.
The main reason for BITY to learn compatible types is the
lack of the type quantifiers such as unsigned and signed,
while the main reason for Hex-Rays and Snowman is to use
the conservative types. The results indicate that in terms of
pointer types, BITY also performs better than Hex-Rays and
Snowman.

Among the variables of type pointer, we have found that
there are 350 of them that are typed by struct*. Table VII
shows the results for these struct pointers recovered by BITY,
Hex-Rays and Snowman. For these variables, our tool can
learn pointer as the type for 296 (84.57%) variables, among

Fig. 11. Distances of BITY, Hex-Rays and Snowman on Coreutils

which 130 (37.14%) ones are learned correctly with the type
struct*5. While Hex-Rays recovers 146 (41.71%) variables
with pointer, among which 60 (17.14%) ones are recovered
correctly; and Snowman recovers 216 (61.71%) variables with
pointer, among which 182 (52.0%) ones are recovered cor-
rectly. This indicates that, on struct pointers, our tool performs
better than Hex-Rays as well, but a litter worse than Snowman.
Although Snowman can recover more struct pointers, it tends
to infer the pointer into a struct pointer even a pointer of the
basic type.

Moreover, we have analysed some failure cases manually,
and found that there are 3 main reasons: (i) some variables
have too few related instructions for us to learn the right types,
particularly the variables typed by pointer, which contribute
to most of the failures as shown in Tables V and VI (72.58%,
89.96% and 61.44% for BITY, Hex-Rays and Snowman,
respectively); (ii) there are some variables typed of composed
types like array and (direct) struct, which are not easy to
recover and not considered by BITY yet; (iii) for a variable
typed of struct*, if only one field is accessed, then BITY would
learn a pointer pointing to the type of the accessed field, rather
than struct*.

At last, concerning the distance, Figure 11 gives the average
distances of each program for BITY, Hex-Rays and Snowman,

5For simplicity, types for fields are not considered here.

13

TABLE V
COMPARISON RESULTS OF BITY, HEX-RAYS AND SNOWMAN ON COREUTILS

Program Variable BITY Hex-Rays Snowman
R C F P R C F P R C F P

Base64 41 20 19 2 95.12% 29 7 5 87.80% 21 4 16 60.98%
Basename 22 17 4 1 95.45% 12 4 6 72.73% 11 1 10 54.55%

Cat 50 29 19 2 96.00% 18 19 13 74.00% 18 18 14 72.00%
Chron 55 39 8 8 85.45% 32 7 16 70.91% 28 12 15 72.73%
Chgrp 31 21 4 6 80.65% 17 4 10 67.74% 17 10 4 87.10%
Chmod 42 19 20 3 92.86% 20 13 9 78.57% 13 15 14 66.67%
Chown 17 10 4 3 82.35% 6 6 5 70.59% 8 7 2 88.24%
Chroot 23 12 9 2 91.30% 18 4 1 95.65% 8 7 8 65.22%
Cksum 14 6 7 1 92.86% 7 6 1 92.86% 4 5 5 64.29%
Comm 20 10 4 6 70.00% 11 1 8 60.00% 10 4 6 70.00%
Copy 135 69 48 18 86.67% 50 42 43 68.15% 29 72 34 74.81%
Cp 78 46 26 6 92.31% 45 23 10 87.18% 21 43 14 82.05%

Csplit 66 27 32 7 89.39% 26 25 15 77.27% 24 16 26 60.61%
Cut 47 32 14 1 97.87% 31 15 1 97.87% 21 17 9 80.85%
Date 30 18 8 4 86.67% 15 8 7 76.67% 11 10 9 70.00%
Dd 128 81 35 12 90.63% 78 30 20 84.38% 63 33 32 75.00%
Df 92 51 32 9 90.22% 45 25 22 76.09% 27 35 30 67.39%

Dircolors 55 31 23 1 98.18% 26 23 6 89.09% 24 10 21 61.82%
Du 68 27 28 13 80.88% 26 15 27 60.29% 17 32 19 72.06%

Echo 11 8 3 0 100% 5 6 0 100% 7 3 1 90.91%
Expand 25 16 8 1 96.00% 16 9 0 100% 13 6 6 76.00%

Expr 85 29 39 17 80.00% 28 35 22 74.12% 23 22 40 52.94%
Factor 30 20 9 1 96.67% 22 4 4 86.67% 17 3 10 66.67%
Fmt 62 40 15 7 88.71% 40 7 15 75.81% 37 13 12 80.65%
Fold 25 17 8 0 100% 20 5 0 100% 14 8 3 88.00%

Getlimits 20 17 3 0 100% 17 2 1 95.00% 15 1 4 80.00%
Groups 9 5 4 0 100% 5 4 0 100% 3 4 2 77.78%
Head 111 63 41 7 93.69% 52 42 17 84.68% 37 36 38 65.77%

Id 20 13 5 2 90.00% 12 5 3 85.00% 7 10 3 85.00%
Join 106 48 52 6 94.34% 54 24 28 73.58% 44 46 16 84.91%
Kill 27 18 6 3 88.89% 15 9 3 88.89% 12 6 9 66.67%
Ln 29 23 3 3 89.66% 21 5 3 89.66% 11 13 5 82.76%
Ls 352 189 105 58 83.52% 186 73 93 73.58% 156 93 103 70.74%

Mkdir 22 15 4 3 86.36% 10 5 7 68.18% 6 6 10 54.55%
Mkfifo 10 7 2 1 90.00% 7 0 3 70.00% 6 0 4 60.00%

Mktemp 35 23 9 3 91.43% 16 15 4 88.57% 16 13 6 82.86%
Mv 35 20 8 7 80.00% 15 8 12 65.71% 7 14 14 60.00%
Nice 16 15 1 0 100% 15 1 0 100% 12 1 3 81.25%
Nl 18 11 4 3 83.33% 12 3 3 83.33% 8 3 7 61.11%

Nohup 22 20 1 1 95.45% 19 1 2 90.91% 13 7 2 90.91%
Od 120 88 23 9 92.50% 86 25 9 92.50% 82 18 20 83.33%

Operand2sig 13 11 0 2 84.62% 9 2 2 84.62% 9 4 0 100%
Paste 35 26 7 2 94.29% 24 9 2 94.29% 16 15 4 88.57%

Pathchk 19 15 3 1 94.74% 14 4 1 94.74% 8 8 3 84.21%
Pinky 62 34 22 6 90.32% 44 9 9 85.48% 41 9 12 80.65%
Total 2333 1356 729 248 - 1276 589 468 - 995 713 625 -

Average - - - - 90.32% - - - 82.96% - - - 74.28%

TABLE VI
RESULTS OF POINTERS ON COREUTILS

Num BITY Hex-Rays Snowman
R C F R C F R C F

1021 444 397 180 397 203 421 238 399 384

TABLE VII
RESULTS OF STRUCT POINTERS ON COREUTILS

Num BITY Hex-Rays Snowman
pointer struct* pointer struct* pointer struct*

350 296 130 146 60 216 182

from which we can see that BITY can learn types with a
shorter distance for most programs than both Hex-Rays and
Snowman. On average, the average distance of the types
recovered by BITY, Hex-Rays and Snowman for the test
programs is 0.715, 1.014 and 1.372, respectively, indicating
that BITY can learn more precise types than both Hex-Rays
and Snowman.

2) Experiments on Diffutils and Findutils: The second
benchmark we used for comparison are from GNU Diffutils
and GNU Find Utilities, namely, diffutils-v3.5 and findutils-
v4.7.0, which is a benchmark used by EKALVYA [10]. For
convenience, we collect the data of findutils and diffutils

14

from the dataset of EKALVYA, which are obtained from gcc
compiler without optimization and have eliminated the dupli-
cated functions. Here we focus on the function parameters, as
EKALVYA can only learn types for them. The experiments
proceed as the same as the one on coreutils.

Table VIII shows the experimental results, where the nota-
tions are the same as the ones in Table V. The experimental
results shows that (i) BITY can learn 75% above proper types
for most of the programs, while Hex-Rays and Snowman can
only recover 65% above proper types; (ii) On the whole,
among the types learned by our tool BITY, 566 (43.81%) types
are correct, 334 (25.85%) types are compatible, 900 types
(69.66%) in total are proper; While Hex-Rays recovers 489
correct ones (37.85%) and 118 compatible ones (09.13%), in
total 607 proper ones (46.98%); and Snowman recovers 393
correct ones (30.42%) and 322 compatible ones (24.92%),
in total 715 proper ones (55.34%); (iii) On average, the
proper accuracy rating of BITY, Hex-Rays and Snowman are
77.52%, 64.34% and 63.49%. To sum up, BITY performs
better than Hex-Rays and Snowman, all in terms of correct
types, compatible types, or proper types in the benchmarks
diffutils and findutils as well.

Concerning pointer types, we have found that there are 992
variables that are typed by pointer from the reference type
information. The results for these variables recovered by our
tool BITY, Hex-Rays and Snowman are given in Table IX,
where the notations are the same as the ones in Table VIII.
Among the types learned by BITY, 301 (30.34%) ones are
correct, 332 (33.47%) ones are compatible, and in total 633
(63.81%) ones are proper. While for Hex-Rays, 244 (24.60%)
ones are correct, 113 (11.39%) are compatible, and in total 357
(35.99%) ones are proper; and for Snowman, 161 (16.23%)
ones are correct, 317 (31.96%) are compatible, and in total
478 (48.19%) ones are proper. The results indicate that BITY
also performs better than Hex-Rays and Snowman on diffutils
and find utils, in terms of pointer types.

Let us consider struct pointer types. There are 420 variables
that are typed by struct pointers among the variables identified
in diffutils and findutils. Table X shows the results for these
struct pointers recovered by BITY, Hex-Rays and Snowman.
From the results, we can see that BITY can learn pointer
as the type for 272 (64.76%) variables, among which 110
(26.19%) ones are learned correctly with the type struct*.
While Hex-Rays recovers 68 (16.19%) variables with pointer,
among which 60 (14.29%) ones are recovered correctly;
and Snowman recovers 224 (53.33%) variables with pointer,
among which 205 (48.81%) ones are recovered correctly. This
indicates that, on diffutils and findutils, BITY still performs
better than Hex-Rays on struct pointers as well, but a litter
worse than Snowman. Through manual analysis, we found that
one of the reasons that the accuracy of our struct pointer re-
covery is low, is that our inter-procedural analysis is relatively
weak. For example, many functions just pass the variables of
type pointer to other functions or checks the pointer variables,
without accessing any fields.

Finally, we compute the (average) distances of each vari-
ables in the programs for BITY, Hex-Rays and Snowman.
Figure 11 gives the average distances of each program. The

Fig. 12. Distances of BITY, Hex-Rays and Snowman on Diffutiils and
Findutils

results shows BITY can learn types with a shorter distance for
most programs than both Hex-Rays and Snowman. That is to
say, BITY can learn more precise types than both Hex-Rays
and Snowman on diffutils and findutils as well.

D. Comparison against EKLAVYA

To evaluate BITY further, we also compare BITY against
EKLAVYA [10], a recent tool that can learn types for function
parameters from binaries via machine learning. For that,
we perform two experiments, wherein findutils and diffutils,
collecting from the dataset of EKLAVYA, are still used
as the benchmarks. In the first experiment, we respectively
train BITY and EKLAVYA on their own dataset, namely,
BITY is trained on the dataset presented on Section IV-A
(dubbed BITY-Own), while EKLAVYA is trained on the data
in EKLAVYA dataset obtained from gcc compiler (dubbed
EKLAVAY-Own), except for the benchmark findutils and
diffutils. Then we perform BITY and EKLAVYA on the
benchmark. While in the second experiment, we train BITY
and EKLAVAY on the same dataset, namely coreutils (dubbed
BITY-Core and EKLAVAY-Core, respectively), and proceed
on as the same as the first one.

In these experiments we focuses on function parameters,
since EKLAVAY only considers these variables. And we take
in account the functions whose parameter types that can be
learnt by both BITY and EKLAVYA. The experimental results
are shown in Table XI, where Variables denotes the number
of the target variables, RV denotes the number of variables
that are recovered by the tools, CV denotes the number of
variables that are recovered correctly, PT denotes the number
of variables, whose types are recovered properly, and PP is
the percentage of the proper types among all the types. Note
that the numbers of variables for some functions are different
from the ones in Table VIII, due to that different tools use
different front ends or generate different high-level codes.

First, from the results we can see that, among the 1367
variables, BITY (both BITY-Own and BITY-Core) can identify
1364 variables with a total num 1373, while EKLAVAY-Own
(EKLAVAY-Core, resp.) predicts 1274 (1240 resp.) variables
with a total num 1294 (1298 resp.). That is to say, BITY can

15

TABLE VIII
COMPARISON RESULTS OF BITY, HEX-RAYS AND SNOWMAN ON DIFFUTILS AND FINDUTILS

Program Variable BITY Hex-Rays Snowman
R C F P R C F P R C F P

diffutils-cmp 13 9 2 2 84.62% 8 4 1 92.31% 6 4 3 76.92%
diffutils-diff 251 120 68 63 74.90% 108 33 110 56.18% 76 74 101 59.76%

diffutils-diff3 108 59 25 24 77.78% 57 14 37 65.74% 41 25 42 61.11%
diffutils-sdiff 54 30 14 10 81.48% 27 4 23 57.41% 21 11 22 59.26%
findutils-find 568 188 157 223 60.74% 151 43 374 34.15% 130 130 308 45.77%

findutils-frcode 7 6 0 1 85.71% 5 2 0 100.00% 5 0 2 71.43%
findutils-locate 204 106 46 52 74.51% 81 17 106 48.04% 74 58 72 64.71%
findutils-xargs 87 48 22 17 80.46% 52 1 34 60.92% 40 20 27 68.97%

Total 1292 566 334 392 - 489 118 685 - 393 322 577 -
Average - - - - 77.52% - - - 64.34% - - - 63.49%

TABLE IX
RESULTS OF POINTERS ON DIFFUTILS AND FINDUTILS

Num BITY Hex-Rays Snowman
R C F R C F R C F

992 301 332 359 244 113 635 161 317 514

TABLE X
RESULTS OF STRUCT POINTERS ON DIFFUTILS AND FINDUTILS

Num BITY Hex-Rays Snowman
pointer struct* pointer struct* pointer struct*

420 272 110 68 33 224 205

identify more correct number of variables than EKLAVYA,
and has a higher accuracy than EKLAVAY. This is mainly
because that BITY identities parameters via pattern analysis,
which enables us to recover almost all the parameters; while
EKLAVAY predicts the number of parameters via machine
learning, so some parameters are still lost, although the accu-
racy is high.

In the first experiment, we found that EKLAVYA-Own
learns a little more proper types than BITY-Own, while BITY-
Core performs more better than EKLAVYA-Core in term of
proper types in the second experiment. The main reason is that
programs in the dataset of EKLAVYA, including diffutils and
findutils, are almost common utils such that they share many
similar features, which make the type learning perform better.
Moreover, the results also show that BITY-Core performs best
in term of proper types, with an accuracy 85.74%. This is
because BITY learns types for variables from their related
instructions, while EKLAVYA predicts types or numbers for
functions from all the instructions in the functions or all the
call instructions of the functions. In conclusion, we believe
that BITY performs better than EKLAVYA, as the features
characterised by BITY is more representative.

Concerning pointer types, we have found that there are
1070 variables that are typed by pointer from the reference
type information. As EKLAVYA can only learn the pointer
type for a pointer variable without the type information the
variable points to, we focus on pointer type itself here. Table
XII gives the results for these variables recovered by BITY and
EKLAVYA, where the numbers in table denote the numbers
of variables whose types are learnt to be pointers. Due to
the same reason discussed above, BITY-Own performs a litter

Fig. 13. Distances of BITY and EKLAVYA on Diffutiils and Findutils

worse than EKLAVYA-Own in terms of pointer types in the
first experiment, while BITY-Core performs much better than
EKLAVYA-Core in the second experiment. So when trained
on the same dataset, we believe that BITY also performs better
than EKLAVYA in terms of pointer types.

Finally, let us consider the distances. Figure 13 shows the
average distances of each program for BITY and EKLAVYA.
From the results, we can see that BITY can learn types with a
shorter distance for most programs than EKLAVYA for both
experiments. It is worth noting that BITY-Own learns a little
less proper types than EKLAVYA-Own in the first experiment
as shown in Table XI. This is due to that BITY can learn types
that are more close to the correct ones such that the distances
are smaller. The results indicate that BITY can learn more
precise types than EKLAVYA on diffutils and findutils.

E. Performance

This section presents the experiments to evaluate the scal-
ability of BITY. For that, we perform BITY on binaries of
different sizes. The experimental results are given in Table
XIII, where LOC is the lines of the assembly code, Size is
the size of the file in MB, Var is the number of target variables

16

TABLE XI
COMPARISON RESULTS OF BITY AND EKLAVYA ON DIFFUTILS AND FINDUTILS

Experiment Program Variable BITY EKLAVYA
RV CV PT PP RV CV PT PP

Exper 1

diffutils-cmp 13 13 13 10 76.92% 13 13 9 69.23%
diffutils-diff 246 246 246 190 77.24% 245 241 177 72.25%
diffutils-diff3 103 103 103 81 78.64% 96 95 80 83.33%
diffutils-sdiff 50 50 50 36 72.00% 46 46 26 56.52%
findutils-find 655 655 653 366 55.88% 614 605 522 85.02%

findutils-frcode 7 7 7 6 85.71% 7 7 6 85.71%
findutils-locate 208 213 207 145 68.08% 195 190 166 85.13%
findutils-xargs 85 86 85 67 77.91% 78 77 58 74.36%

Total 1367 1373 1364 901 - 1294 1274 1044 -
Average - - - - 74.05% - - - 76.44%

Exper 2

diffutils-cmp 13 13 13 9 69.23% 13 13 7 53.85%
diffutils-diff 246 246 246 228 92.68% 255 238 170 66.67%
diffutils-diff3 103 103 103 100 97.09% 103 94 63 61.17%
diffutils-sdiff 50 50 50 43 86.00% 44 44 27 61.36%
findutils-find 655 655 653 636 97.10% 605 584 381 62.98%

findutils-frcode 7 7 7 6 85.71% 7 7 4 57.14%
findutils-locate 208 213 207 178 83.57% 197 188 129 65.48%
findutils-xargs 85 86 85 65 75.58% 74 72 46 62.16%

Total 1367 1373 1364 1265 - 1298 1240 827 -
Average - - - - 85.87% - - - 61.35%

TABLE XII
RESULTS OF POINTERS FOR BITY AND EKLAVYA

Num Exper 1 Exper 2
BITY EKLAVYA BITY EKLAVYA

1070 613 888 1060 726

TABLE XIII
RESULTS ON BINARIES OF DIFFERENT SIZES

Program LOC Size Var Time-P Time-L
Strcat 508 0.007 8 0.187 0.011

Notepad 12032 2.80 113 0.807 0.229
SmartPPT 128381 4.76 166 1.156 0.365
Doro PDF 25910 16.30 71 0.692 0.068
QuickTime 61240 18.30 247 2.132 0.607

Firefox 12068 110.79 113 0.906 0.254
VMware 39857 282.00 352 3.739 0.911
OpenCV 61636 348.00 287 4.130 0.722

VSX6 pro 129803 1341.44 450 4.762 1.921

in stack, Time-L and Time-P denotes the type-learning time
and the preprocessing time excluding the disassembling time
by IDA Pro, respectively. From the results, we can see that (i)
the preprocessing time accounts for a great proportion and is
linear on LOC and variable numbers; (ii) the predicting time
does not cost too much and is linear on variable numbers; (ii)
BITY learns types in just a few seconds for binaries of sizes
ranging from 7KB to 1341.44MB, which indicates that BITY
is scalable and viable for practical use.

F. Application on Malware Detection

On the Internet, one of the most serious security threats
is malware. Various machine learning algorithms have been
used to detect malware recently. Most of them use opcode
and system library as features, while few of them consider the
data information such as types. In this section, as an immediate

application, we conduct experiments to test the ability of the
type information that BITY learns to detect malware.

The training dataset is taken from [26] and consists of
11, 376 malware samples and 8, 003 benign samples. On this
dataset, we perform 10-fold cross validation experiments using
various machine learning algorithms listed in Section IV-B,
and taking opcode, system library, types and their possible
combinations as features separately, wherein we just consider
their data sizes for the composite types for simplicity as their
encoding into vector is not straightforward. The results are
shown in Table XIV, where O, L and T are short for opcode,
library and type, respectively, AUC is short for the area under
the Receiver Operating Characteristic curve (ROC), and the
number in the table denotes the average value of classifiers
trained by NB, KNN, RF and SVM.

From the results we can see that type information is also
effective to help detect malware with the average precision
84.83%, the average accuracy 84.96%, and the average AUC
0.9427. Compared with the other two features, the perfor-
mance of the type feature is quite close to system library,
although it is a little worse than opcode. We believe that con-
sidering composite types fully, especially structs, could obtain
a better accuracy. Moreover, we have also found that type
information would improve the malware detection which does
not take it into account: the average accuracy of classifiers,
which consider not only opcode (resp., library and opcode
plus library) but also type, is 0.34% (resp., 6.18% and 0.85%)
higher than that of classifiers with only opcode (resp., library
and opcode plus library).

To see whether type information can improve the malware
detection in practice, we conduct experiments to compare the
performance between the classifier learned with type feature
and the one without type feature on the recent malware
samples collected from the DAS MALWERK website [27],
which are new to the training dataset above. Table XV gives

17

TABLE XIV
RESULTS OF DIFFERENT FEATURES

Feature Precision Recall Accuracy AUC
O 0.9518 0.8840 0.9339 0.9790
L 0.8711 0.8485 0.8785 0.9397
T 0.8483 0.7701 0.8496 0.9427

O+T 0.9556 0.8883 0.9371 0.9818
L+T 0.9109 0.9256 0.9328 0.9735
O+L 0.9572 0.8996 0.9423 0.9856

O+L+T 0.9582 0.9008 0.9431 0.9869

TABLE XV
RESULTS OF CLASSIFIERS WITH AND WITHOUT TYPE

Sample With Type Without Type Only Type
364 297 295 287

the results, which show that the classifier trained with type
feature can detect two more malware samples than the one
without. Moreover, the classifier trained with only type feature
can detect 287. Although the number is less than the one (295)
of the samples detected by the classifier trained without type
feature, it can enhance the confidence of the detection.

V. DISCUSSION

In this section, we discuss some limitations of our approach.

A. Program Analysis and Machine Learning
Different from most existing work, our approach employs

machine learning, rather than program analysis. So we first
discuss limitations of these two approaches in binary type
inference.

Table XVI shows the comparisons between program analy-
sis and machine learning in binary type inference. Generally,
machine learning approach is easier to start than program
analysis approach, since program analysis approach requires
much prior knowledge, such as control-flow and typing rules
(i.e., the behaviour patterns for types). In particular, there may
be too many patterns for a type or too many possible types for
some patterns to figure out manually. Another limitation for
program analysis approach is the scalability. As mentioned
in Section I, “DIVINE [7] spends 2 hours while analyzing
programs of the order of 55, 000 assembly instructions” [4].
While for machine learning approach, once a classifier is
trained, it can learn the types efficiently.

TABLE XVI
COMPARISON BETWEEN PROGRAM ANALYSIS AND MACHINE LEARNING

Program Analysis Machine Learning
Easy to start hard easy

Prior Knowledge needed not or less needed
Scalability uncertain relatively good

Rich samples not need require
Explicable easy to reasoning hard to reasoning

Accuracy over-approximate or
under-approximate uncertain

However, one limitation of machine learning approach is
that it requires rich samples to train or mine a classifier. More

samples always can get a better classifier. Moreover, different
samples (i.e., dataset) affects the performance of the classifier.
As demonstrated in our experiments in Section IV-D, training
BITY on coreutils can get a better classifier with respect to
diffutils and findutils than training BITY on our own dataset.
Another problem of machine learning approach is explainable.
It is hard to reason why the result type is learnt in machine
learning approach.

Concerning accuracy, program analysis approach always
infers types in over-approximate or under-approximate mode.
Thus it may be too conservative or incorrect (see examples in
Section II). While machine learning approach uses types as
labels of the classifier, and does not take any approximated
mode. Generally, if samples are rich enough, the classifier can
learn types quite accurately.

In fact, we employ both program analysis and machine
learning in our approach: we use program analysis tech-
niques to extract semantic information for variables, which
can characterise the behaviour pattern of types and improve
the accuracy, and use machine learning technique to train a
classifier based on these semantic information, which enables
us to learn types efficiently. This enables us to make full use
of the advantages of machine learning and program analysis
and to strive a balance between accuracy and scalability.

In addition, taking explainable into account, similar to Yang
et al.’s work [28], we can learn the typing rules in logic form
rather then types, by combing program analysis and machine
learning, which is left as a future work.

B. Struct and Struct Pointer

One drawback of BITY is that it cannot recover structs
that are in global memory regions and the stack, which is an
open challenge in binary type inference [29]. As explained in
Section III-D1, a variable of type struct in global memory
regions or the stack is always complied into several ones
corresponding to its components, acting like it were the
definition of these component variables rather then the single
struct variable. Therefore, in this paper, we focus on structs
in the heap area, that is, struct pointers.

It is worth noting that, although our variable recovery and
points-to analysis work well in practice, there are still some
limitations on struct pointers, such as the non-accessed fields
and nested structs. Moreover, as shown in our experiments in
Section IV-C, there are still 62.9% variables of type *struct
that cannot be recovered correctly.

Let us consider the example shown in Figure 14, where
struct Point is defined with a nested struct Nest. But after
compiling, the nested struct information is lost in the assembly
codes. From the assembly codes, BITY can only recover a
whole struct with all the three components.

In fact, we can enhance our analysis to recover the tree
layout of memory more precisely with a structure analysis,
such as Value-Set Analysis (VSA) [14] and DIVINE [7] (a
combined analysis consisted of VSA and Aggregate Structure
Identification (ASI) [30]). Once the tree layout of memory is
constructed, the leaf nodes are identified as target variables.
Then we can carry on to extract their features to learn their

18

s t r u c t P o i n t {
i n t x ;
s t r u c t Nest {

i n t y ; i n t z ;
} n ;
} ;
void f unc () {

P o i n t⇤ p = (P o i n t ⇤)
ma l l oc (s i z e o f (P o i n t)) ;

p�>x = 2 ;
p�>n . y = 4 ;
p�>n . z = 6 ;

}

f un c proc near
.
.

mov eax , [ebp�8]
mov dword ptr [eax] , 2
mov eax , [ebp�8]
mov dword ptr [eax +4] , 4
mov eax , [ebp�8]
mov dword ptr [eax +8] , 6
.
.

f un c endp

Fig. 14. Snippet Code for nested struct programs

i n t main () {
.
i n t a , b ;
double c = (double) a ;
b = a ;
.
char d , e ;
i n t f = (i n t) d ;
e = d ;
.

}

.
c v t s i 2 s d xmm0, dword ptr a$ [ebp]
movsd qword ptr c$ [ebp] , xmm0
mov eax , dword ptr a$ [ebp]
mov dword ptr b$ [ebp] , eax
.

movsx eax , byte ptr d$ [ebp]
mov dword ptr f$ [ebp] , eax
mov dl , byte ptr d$ [ebp]
mov byte ptr e$ [ebp] , dl
.

Fig. 15. Snippet Code for type cast programs

types with the classifier. At last, composite types like struct
and array are constructed according to the tree layout. This is
left as a future work.

C. Type Cast
By now, we do not handle type casts in BITY. Our approach

is motivated by “duck types”, that is, the type of a variables
is determined by its features and properties rather than being
explicitly defined. If a variable needs a type cast and succeeds,
we believe that it can be operated as well as if it were defined
by the casted type.

Nevertheless, let us discuss how to revise our approach for
type casts. For that, let us consider the programs shown in
Figure 15, which contains two assignments with type casts,
namely, the converting from int to double and the converting
from char to int, and two assignments without type casts,
where the assembly codes are obtained via MSVC, and the
member block v$[ebp] in the assembly codes corresponds to
the variable v in C codes. As discussed in Section III, we
will treat the variables through assignments as a single special
variable and merge the behaviours together to learn a type
for it. Thus type cast information are lost. For example, the
variable a and c will be treated as the same variable. Let us
see the assembly codes. We found that the converting from
integer to double (the converting from char to int, resp.) is
encoded with the opcode cvtsi2sd (movsx resp.). Moreover,
compared to the assignments without type casts, both of which
are represented as “mov, mov”, the assignments with type casts
are compiled into the instruction sequence “cvtsi2sd, movsd”
and “movsx, mov”, respectively.

This indicates that there are some differences for assigne-
ments with type casts. We have also tried different compilers
such as MSVC, gcc, g++, clang and clang++ and found that
the instructions used for type casts are similar. So for type

casts, a solution is to revise our approach: not to merge
the variables and their related instructions for such kinds of
assignments “cvtXX2XX, movXX” or “movXX, movXX”,
where X denotes a character.

D. Function Boundaries

In our variable recovery, we assume that function boundaries
are recovered correctly, since we recover variables function
by function. Let us assume that there are two functions in a
program, both of which have a parameter with different types.
Without loss of generality, the parameters of both functions
are represented as [ebp+8]. If the function boundary cannot
be recovered, then we have to treat the whole program as
a single function as mentioned in Section III. In that case,
all the [ebp+8] would be treated an identity variable, . So
there is at least one parameter lost. Moreover, the learnt type
is not correct, since all the related instructions, belonging
to different types, are collected. Similarly to the case where
function boundaries are recovered incorrectly. In a word, the
wrong function boundaries can affect our variable recovery
and instruction extraction, and thus type learning.

In this paper, we focus on type learning and resort to IDA
Pro to solve the function boundaries.

E. Architecture, Compiler and Optimization

One challenge of binary analysis is that binaries are ar-
chitecture and compiler dependent, plus the compiler op-
timizations specific to the architecture. Generally, binaries
with the similar configurations share similar features, such as
instructions. As discussed in Section V-A, BITY is sample
dependent, and thus is configuration dependent in some sense.
Our dataset are collected from binaries which are complied by
gcc and MSVC with none optimization on x86 64 platforms.
So we think it would perform better on the binaries with
the similar configurations than others. For example, another
reason that why BITY-Core performs better than BITY-Own
on diffutils and findutils is that both the training dataset and
the test dataset used by BITY-Core are collected via gcc, while
the training dataset used by BITY-Own is via MSVC and gcc
but the test dataset is via gcc.

F. Obscured or Encrypted Binaries

Nowadays, there are many binaries that are obscured or
encrypted, and anti-obfuscation and binary-decryption can be
regard as independent research topic [31]. This paper focuses
on type learning, and we assume that binaries are not obscured
or encrypted in this paper.

In our tool BITY, we use IDA Pro as our front end. One can
try to handle these obscured or encrypted binaries with IDA
Pro, if they can be disassembled, then BITY can be apply on
them. Otherwise, one can use any anti-obfuscation or binary-
decryption tools to disassemble these binaries, and then pass
the assembly codes to BITY.

zhiwu

19

VI. RELATED WORK

There have been a large body of work on binary type
inference. In this section we discuss a number of recent
related work. Interested readers can refer to [29] for a more
comprehensive survey.

TIE [6] is a static tool to infer primitive types for vari-
ables in binaries, which are limited to integer and pointer
types. Moreover, rather than the specific types, its output is
the upper bounds or the lower bounds, which may not be
accurate enough for binary engineers. Binary type inference in
PointerScope [13], a tool to detect the pointer misuses, focuses
on the pointer types. Aiming for scalability, SecondWrite [4]
combines a best-effort VSA variant for points-to analysis with
a unification-based type inference engine, but the accuracy
depends on high-quality points-to data. Robbins et al. [24]
reduce the binary type inference problem into a rational-tree
constraint problem, which is then solved through an SMT
solver. Yan and McCamant’s work [32] proposes a graph-
based algorithm to check whether the variables typed by int
are declared with unsigned or signed. Retypd [2] is a novel
static tool for type inference on machine code, which supports
subtyping, recursive types, and polymorphism. Hex-Rays [1]
is a popular commercial tool for binary code analysis, whose
exact algorithm is proprietary. All these tools above resort
to static program analysis techniques, which are too heavy-
weight for practical use or too conservative to recover types
with high accuracy.

Howard [33] and REWARDS [3] adopt a dynamic approach
to detect data structures, by generating type constraints from
execution traces. ARTISTE [34], another tool to detect data
structures dynamically, takes a combination of value invari-
ants, cycle invariants, and points-to relationships to generate
hybrid signatures that minimize false positives. MemPick [35],
[36] focuses on the high-level data structures such as singly-
or doubly-linked lists, graphs, and many types of trees like B-
trees and AVL. DSIbin [37] uses a combination of DSI and the
type excavator Howard for the inspection of C/C++ binaries
to identify dynamic data structures. However, as approaches
based on dynamic analysis, these tools cannot achieve full
coverage of variables defined in a program.

Some tools concern recovering object-oriented features from
C++ binaries [5], [38]–[40]. Most of them adopt program
analysis techniques, except for Katz et al.’s work [40], which
uses object tracelets to capture potential runtime behaviours of
objects and ranks the possible types based on object tracelets.
Similar to this work, we use the related instruction set to
capture potential behaviours of variables, without considering
the order, yielding a simpler solution.

Moreover, Raychev et al. [41] propose a new approach to
predict from “big code” program properties, including types.
Their approach leverages program structures to create depen-
dencies and constraints, which are used for probabilistic rea-
soning. As lots of program structures can be easily discovered
at high-level source code, this approach works well. However,
less program structures can be recovered for stripped binaries.
Recently, Zheng et al. [10] present the system EKLAVYA
which trains a recurrent neural network to recover function

type signatures from disassembled binary code. While our
solution recovers types for not only parameters of functions
but also local and global variables. Moreover, our solution
considers the multi-level pointer such that our types are more
expressive than theirs.

VII. CONCLUSION

Binary type inference is valuable for binary analysis. In this
work, we have proposed a new approach to learning the most
possible type for a recovered variable. Different from existing
work, our approach is based on classifiers, without resorting
to program analysis techniques such as constraint solving
techniques. To demonstrate the viability of our approach, we
have implemented our approach in a prototype tool BITY
and carried out some interesting experiments. Our experiments
have shown that BITY returns more precise results than the
commercial tool Hey-Rays, the open source tool Snowman
and a recent tool EKLAVYA using machine learning, and can
help detect malware.

As for future work, we will take type quantifiers (e.g.,
signed) into account. We can enhance our analysis with VSA
or DIVINE to recover more structures for composite types.
We can implement our approach in some open source tools
or as a plus-in. We can also try to learn some typing rules in
logic form rather than type to improve interpretability.

ACKNOWLEDGEMENTS

This work was partially supported by the National Natural
Science Foundation of China under Grants No. 61502308
and 61772347, Science and Technology Foundation of Shen-
zhen City under Grant No. JCYJ20170302153712968, Project
2016050 supported by SZU R/D Fund and Natural Science
Foundation of SZU (Grant No. 827-000200).

REFERENCES

[1] The IDA Pro and Hex-Rays, http://www.hex-rays.com/idapro/.
[2] M. Noonan, A. Loginov, and D. Cok, “Polymorphic type inference for

machine code,” in ACM Sigplan Conference on Programming Language
Design and Implementation, 2016, pp. 27–41.

[3] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Network and Distributed System
Security Symposium, 2010.

[4] K. Elwazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Scalable
variable and data type detection in a binary rewriter,” in ACM Sigplan
Conference on Programming Language Design and Implementation,
2013, pp. 51–60.

[5] A. Fokin, E. Derevenetc, A. Chernov, and K. Troshina, “Smartdec:
Approaching c++ decompilation,” in Reverse Engineering, 2011, pp.
347–356.

[6] J. H. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse
engineering of types in binary programs,” in Network and Distributed
System Security Symposium, 2011.

[7] G. Balakrishnan and T. Reps, “Divine: discovering variables in executa-
bles,” in International Conference on Verification, Model Checking, and
Abstract Interpretation, 2007, pp. 1–28.

[8] O. Kramer, Scikit-Learn. Springer International Publishing, 2016.
[9] Snowman, https://derevenets.com/.

[10] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in the 26th USENIX Security
Symposium, 2017.

[11] Z. Xu, C. Wen, and S. Qin, “Learning types for binaries,” in Interna-
tional Conference on Formal Engineering Methods, 2017, pp. 430–446.

[12] GNU Diffutils, https://www.gnu.org/software/diffutils/.

20

[13] M. Zhang, A. Prakash, X. Li, Z. Liang, and H. Yin, “Identifying and
analyzing pointer misuses for sophisticated memory-corruption exploit
diagnosis,” Proceedings of the Western Pharmacology Society, vol. 47,
no. 47, pp. 46–49, 2013.

[14] G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 binary
executables,” University of Wisconsin-Madison Department of Computer
Sciences, 2012.

[15] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “Byteweight:
learning to recognize functions in binary code,” in Usenix Security
Symposium, 2014.

[16] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions
in binaries with neural networks,” in Usenix Conference on Security
Symposium, 2015, pp. 611–626.

[17] R. Qiao and R. Sekar, “Function interface analysis: A principled
approach for function recognition in cots binaries,” in Dependable Sys-
tems and Networks (DSN), 2017 47th Annual IEEE/IFIP International
Conference on. IEEE, 2017, pp. 201–212.

[18] B. C. Pierce, Types and Programming Languages. MIT Press,, 2002.
[19] IntelCorporation, Intel 64 and IA-32 Architectures Software Developer

Manuals, December, 2016.
[20] J. Crnic, Introduction to Modern Information Retrieval. McGraw-Hill,

1983.
[21] D. Brumley and J. Newsome, “Alias analysis for assembly,” School of

Computer Science, Carnegie Mellon University, Tech. Rep., 2006, cMU-
CS-06-180.

[22] 178 algorithm C language source code.,
http://www.codeforge.com/article/220463.

[23] X. Shiliang, Commonly Used Algorithm Assembly (C Language Descrip-
tion). Tsinghua University Press, 2004, in Chinese.

[24] E. Robbins, J. M. Howe, and A. King, “Theory propagation and
rational-trees,” in Symposium on Principles and Practice of Declarative
Programming, 2013, pp. 193–204.

[25] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function
detection in binaries,” in IEEE European Symposium on Security and
Privacy, 2017, pp. 177–189.

[26] Z. Xu, C. Wen, S. Qin, and Z. Ming, “An effective malware detection
based on behaviour and data features,” in 2nd International Conference
on Smart Computing and Communication, 2017, pp. 55–68.

[27] DAS MALWERK, http://dasmalwerk.eu/.
[28] F. Yang, Z. Yang, and W. W. Cohen, Differentiable Learning of Logical

Rules for Knowledge Base Reasoning, 2017.
[29] J. Caballero and Z. Lin, “Type inference on executables,” Acm Comput-

ing Surveys, vol. 48, no. 4, p. 65, 2016.
[30] G. Ramalingam, J. Field, and F. Tip, “Aggregate structure identification

and its application to program analysis,” in ACM Sigplan-Sigact Sym-
posium on Principles of Programming Languages, 1999, pp. 119–132.

[31] M. Mateas and N. Montfort, “A box, darkly: Obfuscation, weird
languages, and code aesthetics,” in the 6th Digital Arts and Culture
Conference, 2005, pp. 1–22.

[32] Q. Yan and S. McCamant, “Conservative signed/unsigned type infer-
ence for binaries using minimum cut,” Technical Report. University of
Minnesota, 2014.

[33] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures,” in Network and Distributed
System Security Symposium, 2011.

[34] K. Elwazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua, “Artiste:
Automatic generation of hybrid data structure signatures from binary
code executions,” Technical Report TRIMDEA-SW-2012-001. IMDEA
Software Institute, 2012.

[35] I. Haller, A. Slowinska, and H. Bos, “Mempick: High-level data structure
detection in c/c++ binaries,” in Reverse Engineering, 2013, pp. 32–41.

[39] K. Yoo and R. Barua, “Recovery of object oriented features from c++
binaries,” in Asia-Pacific Software Engineering Conference, 2014, pp.
231–238.

[36] ——, “Scalable data structure detection and classification for c/c++
binaries,” Empirical Software Engineering, vol. 21, no. 3, pp. 778–810,
2016.

[37] T. Rupprecht, X. Chen, D. H. White, J. H. Boockmann, G. Lttgen,
and H. Bos, “Dsibin: Identifying dynamic data structures in c/c++
binaries,” in IEE/ACM International Conference on Automated Software
Engineering, 2017, pp. 331–341.

[38] W. Jin, C. Cohen, J. Gennari, C. Hines, S. Chaki, A. Gurfinkel,
J. Havrilla, and P. Narasimhan, “Recovering c++ objects from binaries
using inter-procedural data-flow analysis,” in ACM Sigplan on Program
Protection and Reverse Engineering Workshop, 2014, p. 1.

[40] O. Katz, R. El-Yaniv, and E. Yahav, “Estimating types in binaries using
predictive modeling,” in ACM Sigplan-Sigact Symposium on Principles
of Programming Languages, 2016, pp. 313–326.

[41] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from “big code”,” in The ACM Sigplan-Sigact Symposium on Principles
of Programming Languages, 2015, pp. 111–124.

Zhiwu Xu Zhiwu Xu received his Ph.D. in Com-
puter Science from University Paris Diderot - Paris
7 and University of Chinese Academy of Sciences
under the joint cultivation in 2013. Zhiwu Xu is
currently an assistant professor at Shenzhen Univer-
sity. His research is in the area of program analysis
and verification, type systems, software security, and
machine learning.

Cheng Wen Cheng Wen received his Master’s de-
gree in Software Engineering from Shenzhen Uni-
versity in 2018. Cheng Wen is currently a Ph.D
student in Software Engineering in Shenzhen Uni-
versity. His research is in the area of program
analysis and verification, binary code type inference
and machine learning.

Shengchao Qin Shengchao Qin got his PhD in Ap-
plied Mathematics from Peking University and also
worked as a Postdoctoral Research Fellow in Na-
tional University of Singapore under the Singapore-
MIT Alliance program, before moving his job to
UK. His research interests lie mainly in formal meth-
ods, software engineering and programming lan-
guages, in particular, formal specification and mod-
elling, program analysis and verification, theories
of programming, program logic such as separation
logic. To this date he has published over 100 papers

in international journals and peer-refereed international conferences.

