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Abstract

To ensure that a program uses its resources in an appropriate manner is vital for program correctness. A
number of solutions have been proposed to check that programs meet such a property on resource usage.
But many of them are sophisticated to use for resource bug detection in practice and do not take into
account the expectation that a resource should be used once it is opened or required. This open-but-not-used
problem can cause resource starvation in some cases, for example, smartphones or other mobile devices
where resources are not only scarce but also energy-hungry, hence inappropriate resource usage can not
only cause the system to run out of resources but also lead to much shorter battery life between battery
recharge. That is the so-call energy leak problem.

In this paper, we propose a static analysis called state-taint analysis to detect resource bugs. Taking the
open-but-not-used problem into account, we specify the appropriate usage of resources in terms of resource
protocols. We then propose a taint-like analysis which employs resource protocols to guide resource bug
detection. As an extension and an application, we enrich the protocols with the inappropriate behaviours
that may cause energy leaks, and use the refined protocols to guide the analysis for energy leak detection.
We implement the analysis as a prototype tool called statedroid. Using this tool, we conduct experiments on
several real Android applications and test datasets from Relda and GreenDroid. The experimental results
show that our tool is precise, helpful and suitable in practice, and can detect more energy leak patterns.
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1. Introduction

Resource usage [1] is one of the most important characteristics of programs. To ensure that a program
uses its resources in an appropriate manner is vital for program correctness. For example, a memory cell
that has been allocated should be eventually deallocated (otherwise it may cause resource leak or memory
leak), a file should be opened before reading or writing (otherwise it may cause program errors), and an
opening camera (a popular resource for smartphones nowadays) should be closed eventually (or it will
drain battery unnecessarily if it remains open after use).

A number of static analyses have been proposed to analyse the correct usages of computer resources [2,
3, 1) 14, 5, 16, [7]. Most of them adopt a type-based method to ensure a resource-safe property. However,
although sound, they either require rather complex program annotations to guide the analysis or are rather
sophisticated to use for resource bugs detection in practice, since one needs to enhance a type system with
resource usage information, which may not be an easy task for users to follow. Taking the file resource as an
example, a possible type annotation is pa. (0&((Ireaa&lwrite); @))); lciose [1], which involves several usage
constructors. When files are accessed through the invocation of a function closure, the type annotation
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could be more complex, for example, pa. (0&((Iread&lwrite); &))); lciose @ U, where U is the usages for the
other resources. Moreover, few of them concern about that an opening (or required) resource should be
used before it’s closed (or released). While in some cases it may be just a minor problem or even cause
no harm for an opened (obtained) resource to be left unused /unattended, in other cases this may lead to
more severe problems. For instance, when some resource is very limited but is not released timely, it may
lead to a major problem, causing resource starvation, severe system slowdown or instability. Specifically,
for mobile devices, such as tablets and smartphones, which are ubiquitous and hugely popular nowadays,
some resource can be rather limited, an example being their power energy (i.e., the battery capacity). Most
resources of mobile devices are not only scarce but also energy-hungry, such as GPS, WiFi, camera, and so
on. Leaving these resources continuously open could be more expensive, as they would consume energy
continuously leading to a shorter battery life (before a recharge). This is the so-call energy leak problem [8],
that is, energy consumed that never influences the outputs of a computer system.

In this paper, we propose a static analysis called state-taint analysis to detect resource bugs, which is
easy to use in practice and helps detect the open-but-not-used problem. Taking the open-but-not-used prob-
lem into account, we specify the appropriate usage of resources as resource protocols. A resource protocol
describes how a resource should be used or which behaviour sequences (on resource usage) are appropri-
ate. Resource protocols can be viewed as a kind of typestate properties [2], which can be represented as
finite state automata. According to the API documentation of resources, different resources have different
specific automata. A behaviour sequence that does not satisfy its corresponding protocol is considered as
a resource usage bug.

Our proposed static analysis is a combination of typestate analysis [2] and taint analysis [9]. The anal-
ysis takes a control flow graph (CFG) of a program as input, and is guided by the resource protocols to
track the resource behaviours among CFG. Following the idea of taint analysis, our analysis propagates
the states of resources among CFG. During the propagation, our analysis will check whether the resource
behaviours confirm to the corresponding resource protocols (i.e., typestate checking). In detail, our analysis
will verify that (i) whether all the resource behaviours obey the resource protocols before the exit of CFG,
and (i7) whether the states of resources at the exit of CFG are all accepting ones of their corresponding pro-
tocols. Our analysis is flow-sensitive, so states for one resource from different paths may be different and
are preservedﬂ Compared with the existing works [2} 3} 1,4, 516} [7], which adopt type-based approaches,
our analysis (i) is easier to use (i.e., without the need for complex type annotations), and (ii) helps to detect
the open-but-not-used problem.

Furthermore, we enrich the resource protocols with extra information, namely, inappropriate behaviours
that may cause a specific program bug, and we extend our state-taint analysis to detect these inappropriate
behaviours. As an application, we use the extended behaviour analysis to detect energy leaks for smart-
phone applications, since the energy leak problem becomes a critical concern for smartphone applications.
Usually, a resource bug can cause an energy leak, if the bug keeps the resource open unnecessarily. We
distinguish the behaviour sequences that may cause energy leaks from the other inappropriate ones, and
enrich the protocol with them. For example, to open an unneeded resource will cause an energy leak, while
to use a closed resource will not. With the enriched protocols as a guide, we thus can use the extended be-
haviour analysis to detect energy leaks for smartphone applications. Moreover, sensitive data is essentially
a resource. Our analysis can aslo be used to detect information leaks. In that case, our analysis degenerates
into taint analysis. The extension of protocols with guards is also discussed.

We have also implemented the proposed analysis in a tool called statedroid, and conducted some experi-
ments on many Android applications collected from F-Droid, and test datasets from Relda and GreenDroid.
The experimental results show that our tool is precise and viable in practice. The results also demonstrate
that, compared with Relda and GreenDroid, our tool can detect more energy leak patterns.

This paper is an extension of [10], and further contains the core language with resource usage, the
proof of correctness, some possible extensions of the analysis, more experiments and several recent related
work. Please note that, in this extended version, we generalize the analysis of energy leaks in [10] to be

IFor simplicity, we do not consider the path conditions, so an infeasible path may lead to a false positive.
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an extension of the proposed state-taint analysis (see Section [5), which we called as resource behaviour
analysis, so as to analyze the behaviours that may lead to a special program bug such as energy leaks and
information leaks. Therefore, instead of being a direct extension of the previous energy leak analysis in [10],
our new energy leak analysis is an application of the extended state-taint analysis (i.e., resource behaviour
analysis).

The rest of the paper is constructed as follows: Section [2| gives some backgrounds of taint analysis
and typestate analysis and the notation list used in the paper. Section [3|illustrates some examples that
have potential resource bugs or energy leaks. Section [4] presents the main algorithms of our analysis.
Section 5| extends our analysis to detect some inappropriate behaviours and gives an application of using
the extended analysis to detect energy leaks. Section||and Section [7] present the selected implementations
and experiments, respectively. Section [§reviews related work and Section[J| concludes the paper.

2. Background

Since our analysis is a combination of typestate analysis and taint analysis, we introduce them briefly
in this section.

Taint analysis [9], one of the most well-known data-flow analyses, consists of tracking all the variables
either which are predefined as taint sources such as the ones containing user supplied data (i.e., a “taint”)
or whose computations depend on some taint sources (i.e., a “taint” propagation) and preventing those
variables from being used (i.e., a “sink”) until they have been sanitized. This technique is often applied on
malware analysis, input filter generation, test case generation, vulnerability discovery, and so on.

Typestate analysis [2] is a form of program analysis, which is most commonly applied to object-oriented
languages. Typestates define valid sequences of operations that can be performed upon an instance of a
given type. Typestates associate state information with variables of that type, which is used to determine at
compile-time which operations are valid to be invoked upon an instance of the type. Operations performed
on an object that would usually only be executed at run-time are performed upon the type state information
which is modified to be compatible with the new state of the object.

The notations used in the paper are listed in Table

Table 1: Notation List

Notation Descriptions Notation Descriptions

p Programs S Statements

p.q Variables f.g Filed names
r Resources rid Resource instances
c Classes m Methods
A Actions in automata || accepts Accepting states of automata
s States in automata v Variable sets
d Data facts D Data fact mapping

M Memory environment, mapping variables to resource instances
B Behaviour environment, mapping resource instances to behaviour traces

L(rid) The set of appropriate behaviour sequences of rid
MD Method table, mapping method names to their definitions
PD Protocol table, mapping resource instances to their protocols
action(rid,s, A) | Returns the state by performing A on s w.r.t. rid
state(rid, d) Returns the set of states of rid in d

3. Illustrated Examples
In this section, we illustrate some examples that may have potential resource bugs or energy leaks.
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1 public class Test {

2 public static void main(string|[] args) {
3 f = new RandomAccessFile(” file”, "tw”);
4 if (write_.cond) f.write(”text”);

5 if (read_cond) str = f.read ();
6 if (
7

8

”

close_cond) f.close();
}

}

Figure 1: Snippet Code of File

1 public class TestActivity extends Activity {

2 protected void onCreate(Bundle b) {

3 URL url = new URL(”http://www.android.com”);
4 HttpURLConnection huc =

5 (HttpURLConnection) url.openConnection ();
6 if (download-condition) {

7 InputStream out = huc. getInputStream ();

8 String str = String.valueOf(out.read ());
9 if (use_condition) tv.setText(str);

10 if (download_again) {

11 str = String.valueOf(out.read ());

Figure 2: Snippet Android Code of Network

As an example, Figure [I| shows a code snippet about the file resource. This program first opens a file
(Line 3). It writes (Line 4) and then reads (Line 5) the file under certain conditions. It closes the file when
the close_cond condition is met (Line 6). The program is not resource-safe. Firstly, it does not always close
the opened file, as close_cond (Line 6) may not hold. For instance, an I/O exception is generated by the
read or write behaviour and programmers forget to close the file for that case. Secondly, if neither the
write_cond (Line 4) nor read_condition (Line 5) is met, then the opened file will not be used at all. In that case,
an unneeded file is created and left open causing resources to be wasted.

With respect to energy consumption (i.e., energy leaks), a resource bug may cause an energy leak. Let us
consider the snippet Android code of network in Figure [2| which has some potential energy leaks caused
by resource bugs.

This program seems correct, but there are several situations that may cause energy leaks. The first sce-
nario is when the download_condition (Line 6) is not met, for instance, a user does not click, in which case the
program would not download any data. This indicates that HTTP connection is left open unnecessarily, in
which case unnecessary consumption of energy takes place. The second scenario is when the use_condition
(Line 9) is not met. In that case, the downloaded data would not be used, signifying unnecessary energy
consumption (for the unnecessary download). Moreover, if the download_again (Line 10) condition is met,
the variable str would point to the newly downloaded data, leaving the previously downloaded one inac-
cessible. So the former data is never used, leading to an energy leak. Even worse, if the connection and
the input stream are used only to download the unwanted data, then it is clearly unnecessary to open the
connection and the input stream. In other words, the program may open the unneeded HTTP connection
and input stream to cause unnecessary energy consumption and hence an energy leak. Finally, even they
are needed, the connection and the input stream are not closed at last. Thus it remains open to consume
energy until the exit of the application. For the benefit of saving energy and according to Javadoc for
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HttpURLConnection, it should be closed eventuallyﬂ

4. State-Taint Analysis

In this section, we present a static analysis called state-taint analysis to help detect resource bugs. We first
give a core language with (explicit) resource usage commands, and then specify resource usage behaviours
in terms of resource protocols which depict how resources should be used. After that, we present our state-
taint analysis, which takes resource protocols as a guide, to detect resource usage bugs. We also prove the
correctness of the proposed analysis and illustrate the analysis via an example.

4.1. A Core Language with Resource Usage

To characterise the resource usages in the examples illustrated in Section 3} we consider a core language
with resource usage. While different resources may have different APIs, for example, openConnection and
disconnect are APIs for HTTP connections, Open, Write, Read and Close are APIs for Files. These APIs share
the same behaviour patterns, namely, open, use, and close. For simplicity, we shall focus on these abstract
behaviours. Indeed, we can consider that there is a mapping Label for each resource that maps an API to an
(abstract) behaviour. Therefore, the core language with resource usage consists of the following (abstract)
statements:

S u= p=openr|userp|closerp|p=q|lp=9q.f|lpf=9
| if cond SelseS | whilecond S |S; S|q=cm(ay,..., a,)

where p,q € V are variables, f € F is a field name, r € R represents a kind of resource, cond is a boolean
expression, 1 is the number of parameters of method m in class ¢, and g4; is an argument of function m. A
function definition has the following syntax:

funcm(py, ..., pn) {S; return res}

where p; is a parameter of function m in class c and res is a special variable res that holds the return value of
the function. A program P consists of a finite number of function definitions and a sequence of statements.

An evaluation environment is a pair (M,B), where M is a memory environment that maps variables to
resource instances, and B is a behaviour environment that maps resource instances to behaviour traces.
The semantics is defined via the evaluation rule (M,B) - S — (M’,B’), where (M, B) is an evaluation
environment before the execution of the statement S, and (M’, B') is the evaluation environment after the
execution of S. The evaluation rules are shown in Figure 3| Rules (E-Open), (E-Use) and (E-Close) capture
the semantics of the behaviours of resources, collecting the resource behaviours into sequences by order:
Rule (E-Open) creates a new instance with a single behaviour open, and (E-Use) and (E-Close) separately
append their behaviours into the behaviour environments of their corresponding resource instances. Sim-
ilar to [1], we assume that opening a resource always succeeds and returns a new instance. This is because
(1) it is not easy to capture the result of opening a resource by static analysis: a simple solution is to add
side conditions to specify success or failure into the semantics [7], which may generate too many cases and
require guards to be added into our protocols (see Section [5.3); (2) our analysis focuses on the behaviour
sequences of resources rather than the behaviour effect (see resource protocols in Section £.2), although a
failed opening can lead to a false positive. Consequently, a behaviour sequence, which may open a unique
resource several times, is divided into several ones such that each one starts from open. Note that this as-
sumption is not too strong for our analysis, since if these divided behaviour sequences cause some resource
bugs, so would the original one, and vice verse (regardless of the failed opening). The (E-Assi) (i=1,2,3)
rules capture the semantics of the assignments. For simplicity, our semantics does not differentiate be-
tween stack variables and heap ones. That is, a heap variable such as a field g.f acts like a stack one, except
that the heap one 4.f may have some aliases, which are represented by alias(q.f). The next five rules deal
with the control-flow statements, which are routine and thus are not elaborated here. Finally, considering

2There exists a discussion about this close question in stackoverflow. Interesting reader can refer to [11].
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(M,B) & p = openr — (M[p > rid], B[rid — open]), where rid is fresh (E-Open)

M(p) = rid
(M, B) & user p — (M, B[rid — B(rid).use]) (E-Use)
M(p) = rid
(M, B) I close r p — (M, B[rid — B(rid).close]) (E-Close)
(M,B)Fp=4q— (M[p+— M(q)],B) (E-Assl)
(M,B) = p = q.f — (M[p — M(q.f)], B) (E-Ass2)
(M,B) - p.f =g — (M[p’ — M(q)], B), where p € alias(p.f) (E-Ass3)
cond — true (M,B) F Sy — (M1, Bq) (E-If1)
(M, B) Fif cond Sy else S, — (Mj, By)
cond — false (M,B)F S, — (Mp,Ba) (E1R)
(M, B) Fif cond Sy else Sy — (M, By)
cond — true (M,B)+ S — (My,By) (Mjy,By) - while cond S — (Ma, By) A
(M, B) & while cond S — (M3, By) (E-Whilel)
cond — false .
(M, B) b while cond S — (M, B) (E-While2)
(M,B) S — (Ml,Bl) (Ml,Bl) FS, — (Mz,Bz) (E-Seq)
(M,B) [ S],' Sz — (Mz,Bz) q
(M[p; — a;],B) - MD(c.m) — (M’,B’) (E-Fun)

M,B)Fp=cm(ay,...,ay) = (M'|p — M(res)]|, B’
p p
Figure 3: Evaluation rules for statements

the semantics of the function calls, we assume that function definitions are stored in a table MD indexed

by function names. The evaluation rule for function calls is given by (E-Fun), where py, .., pss are the pa-

rameters of function c.m. (E-Fun) first evaluates the function body of c.m, found from the function table

MBD, and then passes to the variable p the result value, held by the special variable res, yielding the final
10 environment.

4.2. Resource Protocols
A resource usage protocol specifies how a resource should be used or which behaviour sequences are
appropriate. Resource protocols can be viewed as a kind of typestate properties [2], which can be repre-
sented as finite state automata. Concerning the open-but-not-used problem, a resource intuitively has (at
155 least) three possible states, namely i/c (i.e., the resource is on the initial state or closed), o (i.e., the resource is
opened or required), and u (i.e., the resource is used). An abstract automaton for general resource protocols
is given in Figure [, where O, U and C are abstract behaviours denoting the relevant opening (or acquir-
ing), using and closing (or releasing) APIs of resources for short respectively. Behaviour sequences that do
not satisfy resource protocols lead to resource bugs. Generally, the appropriate behaviour sequences for a
1o resource should be in form of “O, U, ..., U, C”, namely Oou*Cin regular expressions. Note that there is at
least one use behaviour between the open and close behaviours.
Depending on their usages and API documentation, different resources may have different specific
automataE] generated from the abstract one in Figure 4| Take the file resource for example. There are

3In implementation, we use a configure file to define the protocols, so a user can define the protocols as they wish.
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Figure 4: Abstract FSA for General Resources

(a) Specific FSA for File (b) Specific FSA for WakeLock

Figure 5: Specific FSA for Different Resources

two kinds of usage for a file: read and write. In some cases, these two behaviours may be regarded as
indistinguishable, so the protocol could stay the same as the one in Figure {4} In some other cases, one
may want to distinguish between these two usage behaviours, thus the protocol in Figure 5alcan be used
instead, where the state u is spitted into rd and wr, and the behaviour U into RD (representing read) and
WR (representing write). Another example is WakeLock, which has only two behaviours, namely, open and
close. Figure |bb|gives a specific protocol for WakeLock, which contains only two states.

Assume that there exists a protocol definition function PD which maps resource instances to their cor-
responding protocols. Let action(rid,s, A) denote the action function of the resource instance rid, which
returns the state obtained by performing the behaviour A on the state s if the behaviour succeeds according
to the protocol of rid, or bug otherwise:

s'  ifthereexists s’ - s Ao e PD(rid)

action(rid,s, A) = ‘
bug otherwise

We generalize the action function action to a sequence of behaviours as follows.
action(rid,s, A1Ay ... An) = action(rid, action(rid,s, A1), Ay ... Ay)

Let L(PD(rid)) denote the set of all appropriate behaviour sequences of the resource instance rid. We
say a program is resource usage correct if all the behaviour sequences of all the resources satisfy their
corresponding protocols.

Definition 4.1. Let P be a program. If (0,0) = P — (M, B) and Vrid € dom(B). B(rid) € L(PD(rid)), then P
is resource usage correct.

4.3. Main Analysis

Aiming to detect those inappropriate behaviour sequences that likely lead to resource bugs, we propose
a taint-like analysis, consisting of a state-taint analysis algorithm and an exit checking algorithm. Figure 6]
shows the framework of our analysis.
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Figure 6: Analysis Framework

The state-taint analysis algorithm combines typestate analysis [2] and taint analysis [9]. Different from
taint analysis, our analysis propagates the states of resource protocols among the control flow graph (CFG)
of a program instead of simple source tags. During the propagation, typestate analysis is performed
meanwhile, that is, states of resource instances will be checked and changed depending on the relevant
behaviour according to the corresponding automata. In short, we take resource protocols as a guide to
perform a taint-like analysis on CFG.

Algorithm 1 State-Taint Analysis Algorithm

Input: CFG, resource protocols (automata)
Output: the data fact mapping D
1: for eachnode t € CFG do
22 LetD(t) =@
3: end for
4: enqueue each entry point into queue g
5: while g is nonempty do
6: t < dequeuegq
7. d < apply the transfer function of t on D(t) w.r.t. resource protocols
8 for each successor ' of t do
9 ifd # D(t') then

10: D(t') <~ duD(t)
11: if ' ¢ g then

12: enqueue #' into g
13: end if

14: end if

15 end for

16: end while
17: return D

The state-taint analysis algorithm takes as input the control-flow graph (CFG) of a program and the
automata specifying the resource usage protocols, and returns a mapping D that maps each node to its
data fact. Besides states of the automata, the algorithm also tracks which resource instances are handled
and which variables and fields are “tainted”. Formally, the data fact (or property) that the analysis tracks
is a set of tripes (rid, s, v), meaning that the resource instance rid is at the state s, and may be managed by
the variable set v. We represent variables and fields as access paths [12] up to a fixed length. An access
path is an expression comprised of a variable followed by a (possibly empty) sequence of field names. For
instance, p.f.g represents an access path of length 2. Besides, different paths to a node of CFG can obtain
different states for the same resource. As we would like to identify in which path a resource could cause
resource bugs, we include different states for the same resource into a set rather than unifying them. That
is to say, our analysis is flow-sensitive. Therefore, unlike typestate checking, we do not need to impose
a partial order on states, although it can be done easily. The state-taint analysis algorithm is essentially a
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classic data flow algorithm, which is shown in Algorithm

The algorithm starts from the entry nodes of CFG with the empty data-fact mapping (Lines 1 — 4). For
each node ¢, the algorithm applies its corresponding transfer function, yielding a data fact d to its successors
(Line 7). The transfer functions either check whether the resource behaviour conforms to the corresponding
resource protocol, or propagate the resource information, which are presented in Section [4.3.1} If the data
fact d is different from the original data fact D(#') of a successor ' (Line 9), that is, some data facts are fresh,
then the algorithm update D(t') by unioning D(¢') and d (Line 10), and enqueue #' into the queue g (Line
12). The algorithm traverses over CFG until q is empty, that is, until the data-fact mapping is no longer
updated (Lines 5 — 15).

After the data fact mapping is computed, we also check the data fact at the exit node of each function to
ensure that the resources managed by the local variables are released. The exit checking algorithm is shown
in Algorithm 2} where local (f) returns all the local variables of the function f and PD(rid).accepts denotes
the set of accepting states of the protocol automaton of the resource instance rid. Note that, the global or
static variables are considered as local variables of the main function. The function statecheck(d) (defined
in Table [2) checks whether the bug state occurs in d, and whether a resource instance at a non-accepting
state and not being accessed by any variables exists in d.

Algorithm 2 Exit Checking Algorithm

1: for each exit of each function f do

2. foreach (rid,s,v) € D(exit) do

3 if s ¢ PD(rid).accepts Av C local(f) then
4 statecheck (rid, s, v)

5 end if

6: end for

7: end for

Due to the fresh instance creating of an open behaviour, for an open behaviour occurring in a loop (e.g.,
while-statement), the algorithm will generate a fresh data fact for this behaviour at each loop, which would
cause the algorithm to visit the loop again. However, thanks to the regularity of the behaviour sequences,
it suffices to visit the open behaviour in a loop twice for an identity data fact: one is for the break case and
the other for the continue case. Let us consider the statement: Sy; while cond {S3; p = open r;S4}; Sy and let
b; be the behaviours of resource r in S;. The possible behaviour sequence of resource r is described by the
regular expression by (bs.open.by)*by. Divided by open, the possible behaviour sequences contain b1b; (no
loops), bybs (in the first loop), open.bsby (the break case), and open.bybs (the continue case). There may be
several different resource instances of resource r with the same behaviour open.bsbz. Since they belong to
the same resource r, it is suffice to consider just one instance.

In addition, since the states of the protocol automata, the variables and fields are finite, (and the length
of access paths is capped), the triples are finite as well. Therefore, the state-taint analysis always terminates.

4.3.1. Transfer Functions

Prior to presenting the transfer functions, we introduce some auxiliary functions, which are listed in
Table 2| where remove(v, p) removes the access paths starting with p in variable set v; kill(d, p) deletes the
access paths starting with p in data fact d; lift(d, p) selects the data tripes in d that are accessed by p or an
alias of p, and checks whether there are no resource instances accessed by p in some cases; killalias(d, p, f)
deletes the access paths in d starting with p.f or the alias of p.f; and statecheck(d) checks whether the bug
state occurs in d, and whether a resource instance at a non-accepting state and not being accessed by any
variables exists in 4.

Consider the transfer functions for intra-procedural analysis first, which are listed in Table 3| For the
open behaviour p = open r, it creates a new data tripe (rid, o0, {p}) and kills the data tripes that were man-
aged formerly by p, where rid is fresh. It also checks the newly generated data fact: if a resource is man-
aged by no variables and its state is not an accepting one, then a resource bug is reported. The use and close

9
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Table 2: Auxiliary Functions

Function Output
remove(v, p) v\ {p.7t| p.r € v}, 7is any access path
kill(d, p) {(rid, s, remove(v, p)) | (rid,s,v) € d}

lift(d, p) {(rid,s,v) € d | alias(p) Nv # @} iflift(d,p) = D or

’ 3rid.(rid,s1,v2) € lift(d, p) A (rid, sy, vp) € d \ lift(d, p) then report
killalias(d, p, f) {(rid, s, remove(v,q.f)) | (rid,s,v) € d \q € alias(p)}
{(rid,s,v) | (rid,s,v) € d N's # bug Nv # D}

statecheck(d) ifs = bug Vv (v =0 As ¢ PD(rid).accepts) then report bug
Table 3: Transfer Functions for Intra-Procedural Analysis
Statement Transfer Function f(d)
p = open r {(rid,0,{p})} U statecheck(kill(d, p))
use r p statecheck({ (rid, action(r,s,U),v) | (rid,s,v) € lift(d,p)}) U (d \ lift(d, p))
close r p statecheck({ (rid, action(r,s,C),v) | (rid,s,v) € lift(d,p)}) U (d\ lift(d, p))
p=q {(rid,s, (vU{p.7}) | (rid,s,v) € d AN q.7t € v} Ustatecheck(kill(d, p))
p=q.f {(rid,s, (vU{p.mt}) | (rid,s,v) € d Nq.f.7t € v} Ustatecheck(kill(d, p))
p.f=gq {(rid,s, (v U{p.f.7t}) | (rid,s,v) € d A q.7t € v} Ustatecheck(killalias(d, p, f))
others d

behaviours change the states of resources managed by p respectively according to the resource protocol
automata. After that, the states are checked: if it is a bug state, report it. The assign statement p = q kills
the data fact managed by p, and shares the resource currently managed by g to p (i.e., if 4 is “tainted”, then
p is “tainted” as well). Similarly to p = q.f and p.f = q. Note that the alias analysis is triggered by the use
or close behaviours and the assignments to heap variables.

For inter-procedural analysis, we assume that there is a call edge from a call statement to each of the
possible callees, and there is a return edge from the exit of a callee to each of the call statements that could
have invoked it. Consider a call statement g = c.m(ay, ...,a,). Generally, the call flow function f,;; will
transfer a resource r, managed by an argument g4;, to its corresponding formal parameter p;. If the caller’s
context contains a resource r, then f.;; will also transfer r to the callee’s context by replacing ¢ with this.
The call flow function is:

B {(rid,s, this.rt) | (rid,s,c.7t) € d}
Jean(d) = U {{(rid,s, pi.7) | (rid,s,a;.m) € d}

The return flow function f,.; will do the opposite thing instead. Besides, if the return value x is “tainted”,
then the assignment to 4 makes it “tainted” as well. The return flow function is given as follows:

{(rid,s, c.7t) | (rid,s, this.;t) € d}
fret(d) = U {(rid,s,a;.7t) | (rid, s, p;.7t) € d A —immut(a;)}
{(rid,s,q.7) | (rid, s, x.7) € d}

where immut(a) returns true iff a is a primitive or immutable data, such as Int, Sting, etc.

Generally, any alias analysis can be adopted here. The more precise the alias analysis is, the more precise
result we can get. For instance, with a must-alias analysis fewer but preciser result can be obtained than
with a may-alias one. Here we use the on-demand alias analysis adopted by flowdroid [9], since it is efficient
and context-sensitive.
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4.4. Correctness

Since we focus on the resource usage analysis, assume that the transformation from programs to CFGs
is correct and the alias analysis is correctﬂ Under that assumption, we prove the correctness of our analysis:
if our analysis on a program reports no bug information, then the program is resource usage correct.

We use analysis(P) ~ D to denote the whole analysis on a program P, yielding the data fact mapping
D and the bug information E, and use state(d, rid) to denote the set of states of the resource instance rid in
the data fact d, that is state(d, rid) = {s | Jv. (rid,s,v) € d}.

Definition 4.2. Given a behaviour environment B and a data fact d, we say d entails B, denoted as d F B, if
action(rid, i, B(rid)) € state(d,rid) for all rid € dom(B), where i is the initial state of the protocol automaton of
rid.

Lemma 4.1. Let S be a sequence of statements Sy;...Sy. If (D,@) & St — (M, B) and analysis(S}) ~¢ D,
then D(S,) F B.

Proof. By induction on n. It is trivial when n = 0. Assume that n > 0. In that case, we have S} = S;’*l ;Sq.
According to the semantics, we have that (@,9) - SI™! — (M',B’) and (M’,B') - S,, — (M, B) for some
M’ and B'. By induction on $7 !, we have D(S,_1) F B'. Let us consider S, by cases.

e p=open r: By the semantics, B = B'[rid — open], where rid is fresh. So we only need to consider
the resource instance rid. According to the transfer functions, (rid, 0, {p}) € D(S,) and for any other
rid', state(D(Sy),rid") = state(D(S,_1),rid") (since no bug information is reported). It is clear that
action(rid,i,open) = o. Hence D(S,) F B.

e use r p: Since (M',B’) + S, — (M,B) , then there exists rid such that M'(p) = rid and B =
B'[rid — B'(rid).use]. So we just consider the resource instance rid. Since D(S,_1) F B’, we have
action(rid,i,B'(rid)) € state(D(S,—1),rid). According to the transfer functions, a behaviour use is
performed on rid. As no bug information is reported, rid is accessed by p for all cases and this suc-
ceeds. Thus action(rid, i, B’ (rid).use) € state(D(Sy),rid), thatis, action(rid, i, B(rid)) € state(D(S,), rid).

o close r p: Similar to the case of use r p.

e assignments: It is trivial for the stack variables. For the heap variables, the alias information is en-
sured by the correctness of the alias analysis alias().

e others: Trivial.

Theorem 4.2. Let P be a program. If analysis(P) ~»¢ D, then P is resource usage correct.

Proof. Let the statements in P be S}. Assume (©,?) - S} — (M, B). By Lemma we have D(S,,) F B.
As no bug information is reported, according to the exit algorithm, all the states in D(S,) are accept-
ing ones, that is, for all rid € dom(B), action(rid,i,B(rid)) € PD(rid).accepts. Therefore, for all rid €
dom(B). B(rid) € L(PD(rid)). O

4.5. Example

Consider the file example illustrated in Section [3| again, where the protocol for the file resource is the
one in Figure|5a For convenience, we focus on the resource behaviours and represent them in our abstract
statements presented above. Figure [/] gives the CFG of the file example, where d;s are data facts to be
computed.

The open behaviour generates (File,0,{f}) (i.e., d1), which flows to d, — ds. While the write and read
behaviours change any state to w and r respectively. For dy4, there are three sources: dq, d; and d3. According
to the protocol in Figure [5a} the close behaviour closes d and d3 normally except for dy, since the state of
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Figure 7: Control Flow Graph of File Example

Table 4: Data Facts for File Example

d; Data Fact
{(File,o, {f})}
dy {(File,w, {f})}
{(File,r, {f})}
dy {(File,c,{f}), (File,bug, {f})}
ds | {(File,o,{f}), (File,w,{f}), (File,r,{f}), (File,c,{f}), (File,bug,{f})}

dj is o, indicating that the open file has not been used yet. Finally, all the data facts above flow to the exit
node, thus ds is the union of dy — dy, thatis, ds = dy Udy Uds Udy. All the data facts are shown in Table [4]

Let us check the data fact of the exit node. Only the triple (File,c,{f}) is accepting. The data fact
indicates that (i) the file may be opened but not used or closed in some situation (i.e., at the state o0); (ii) the
file may be opened and then used to read or write, but not closed eventually (i.e., at the state r or w); (iii)
the file may be opened and closed correctly without using (i.e., bug). These are the possible resource bugs
illustrated in Section 3

In addition, assuming that a type-based method is adopted, one needs to give the type annotations
explicitly to all the resource related statements in the program. For this example, a type annotation for
files can be pa.(0&((Ir&Iw); «)); Ic [1], which involves several usage constructors and is not easy to follow.
Type annotations could be more complex, when a resource is accessed through the invocation of a func-
tion closure. Even worse, one may need to understand the whole type system and/or the complex usage
constructors to write the annotations correctly.

5. Extension: Resource Behaviour Analysis

The resource protocols presented in Section {4{ capture the appropriated behaviour sequences. Any se-
quence not accepted by the protocols would be considered as a potential resource bug. However, different
resource bugs may lead to different program bugs. For example, to use an unopened resource may lead
to a program crash while reopening an open resource may not. In this section, by enriching the resource
protocols with some inappropriate behaviours, we extend our analysis to analyze these behaviours that
may lead to special program bugs, for example, energy leaks and information leaks.

5.1. Application: Energy Leaks

Over the last decade, the popularity of smartphones has increased dramatically. This has led to widespread

availability of smartphone applications. Since energy is a scarce resource for smartphones, mobile appli-
cations should be energy efficient. However, many applications are energy inefficient and can suffer from

“Many resource instances are managed by stack variables in practice.
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Figure 8: Enriched FSA with Energy Leaks

energy leaks. Existing studies show that eliminating energy leaks can result in a good reduction in energy
consumption [8} [13]]. Therefore, to detect energy leaks is a meaningful task for smartphone applications.
As an application, we show our proposed state-taint analysis can be easily adapted to detect energy leaks
for smartphone applications.

Enriched Protocols with Behaviours. As discussed in Section [} a resource bug can cause an energy
leak, for example, a resource is left open to consume energy unnecessarily. As also illustrated in the An-
droid code for network in Section |3} the HTTP connection is kept open to consume unnecessary energy.
But not all resource bugs lead to energy leaks, for instance, to use a closed resource is a resource bug but
may not cause a noticeable energy leak. Therefore, we shall distinguish behaviours that may cause energy
leaks from other inappropriate behaviours, and enrich our resource usage protocol with such a distinction.

Figure [8a|shows an abstract automaton for the enriched protocol, where e/ denotes there may be an en-
ergy leak caused by the corresponding behaviour. Generally, if a non-accepting state of a resource reaches
the exit node, an energy leak is then caused by this resource, since it is not closed eventually. Moreover, an
(already opened) resource should not be opened again, since it is currently not yet used and may remain
open to consume energy. Finally, an opened resource should be used before closing. Otherwise, it is an
energy waste to leave it open but not used.

In particular, we also consider the usage of downloaded data, since 70% of energy consumption of
network resources is due to downloads [8]. The protocol of downloaded data can be represented as a two-
states FSA in Figure [8b| where there are no states corresponding to a close behaviour and D is the abstract
behaviour denoting the download APIs for short.

We extend the action function with energy leaks as follows:

s’ if there exists s’ - s Ao e PD(rid)
action(rid,s, A) = <5’ /el  if there exists s' - s Aldy o1 ¢ PD(rid)

bug  otherwise

Analysis Algorithms. The proposed algorithms would still work for the enriched protocols, with a
minor change: the extended action function is used instead and whenever there is an energy leak, it gets
reported. Indeed, the extended analysis is exactly the same as the original one, except that the extended
one reports more specific bugs than the original one does. That is, if a resource bug is reported by the
original analysis, then the extended analysis reports the same bug or a more specific one (e.g., energy
leaks). Moreover, if there are no bugs reported by the original one, so does the extended one. This leads to
a conclusion that the extended analysis is correct as well.

Theorem 5.1. If the extended analysis on a program P reports no bug information, then there are no specific bugs
(e.g., energy leaks) in P.

Proof. Similarly to Theorem 4.2} we can prove P is resource usage correct. Hence there are no specific bugs
in P. O
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Figure 9: Control Flow Graph of Network Example

Example. Let us apply the resource behaviour analysis to detect energy leaks of the network example
illustrated in Section 3} where the enriched protocols for HTTP connection (HC for short) and input stream
(IS for shortf] are in Figureand the one for downloaded data (DD for short) is in Figure Similarly, we
focus on the resource behaviours and represent them in our abstract statements for convenience. Figure

] gives the CFG of the network example, where d; are data facts corresponding to each node and are

shown in Table Note that the statement out = huc.getInputStream() (respectively str = out.read()) is a use
behaviour for HTTP connection (respectively input stream) as well as an open behaviour for input stream
(respectively downloaded data).

Consider the data in Table |5 First, the analysis will generate an energy leak for the second download
behaviour, since the variable str may point to some downloaded but unused data. Next, let us check the
data fact dg at the exit node, where only the triple (DD, u, {str}) is accepting. This data fact dg indicates
that (i) the HTTP connection may be opened but not used ((HC, 0, {huc})) or closed ((HC, u, {huc})) in
some situation; (ii) the input stream is not closed ((IS, u, {out})); (iii) the download data may not be used
in some situation ((DD, o, {str}), (DD’, 0, {str}), where two different instances correspond to two different
download behaviours in the program). All these are the possible energy leaks illustrated in Section[Bearlier.

Table 5: Data Facts for Network Example

Node Data Fact
dq {(HC,o0,{huc})}
do {(HC, u,{huc}), (IS,0,{out})}
d3 {(HC,u,{huc}), (IS, u,{out}), (DD,o, {str})}
dy {(HC,u, {huc}), (IS,u, {out}), (DD, u,{str})}

ds {(HC,u, {huc}), (IS,u, {out}),elpp e (stry), (DD, 0, {str})}
de {(HC,o0,{huc}), (HC,u,{huc}), (IS, u, {out}),
(DD, o,{str}), (DD, u,{str}),(DD’,0,{str})}

5.2. Application: Information Leaks
Another issue for smartphone applications is the information leak problem: apks leak sensitive user
data without the user’s permission. According to existing studies, there are dozens of popular Android

5By present, we consider each resource separately. We left the embedded resources for future work.
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apps that leak sensitive user data. So to detect information leak is also a meaningful task for smartphone
applications.

Indeed, sensitive data is essentially a resource, whose protocol is shown in Figure[10, where OPEN is an
abstract behaviour that gets the sensitive data (e.g., getIMEI) and LEAK is an abstract behaviour that may
leak sensitive data (e.g., sendSMS). The protocol states that once there is a LEAK behaviour following an
OPEN behaviour, there may be an information leak.

According to the protocol, to detect information leaks is reduced to find whether there is a path between
OPEN and LEAK in CFG. If we treat OPEN behaviours as sources and LEAK behaviours as sinks, our
analysis becomes the taint analysis.

5.3. Protocols with Guards

The semantics presented in Section does not take the effects of the behaviours into account. We
should consider the effects for the semantics. For example, if an attempt to open a file fails, the file remains
closed, and thus the read or write behaviour cannot be performed. On the other hand, some behaviours
can only be performed conditionally, an example being that the sensitive data can be assessed only by
the authorized users. Therefore, another possible extension is to enrich the resource protocols with the
performed conditions or the effects of the behaviours, which are described as guards. For example, Figure
gives a partial protocol for file that takes the effect of open behaviour into account, where 0 and 1 denote
failure and success respectively.

As a result, during the analysis, there are two cases for an open behaviour: the success case and
the failure case. Accordingly, two data triples are generated by x = open r: (rid,o, {x},success) and
(rid,i,Q, failure), where both success and failure are guards describing the possible results of open. A
more precise solution would take into account the satisfiability of guards in the analysis, which is left as
future work.

6. Implementation

We have implemented our analysis as a tool called statedroid and used it to detect energy leaks for
Android applications. The tool consists of a front-end and a back-end, as shown in Figure The front-
end parses an apk file and then builds a control flow graph, which is passed to the back-end as input. Our
tool’s front-end is very similar to that of flowdroid, whose front-end provides almost the same functionalities
as ours. Interesting readers can refer to [9] for more details. While the back-end takes as input the control
flow graph built by the front-end and the resource protocols, and performs state-taint analysis and exit
checking presented in Section[d] Our state-taint analysis is implemented upon the IFDS framework [14].
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7. Experimental Evaluation

To evaluate our analysis, we have conducted a series of experiments on real Android applications to
detect energy leaks by using statedroid, where the applications are collected from F-Droid, a test dataset of
Relda [15] and a test dataset of GreenDroid [16]. All the experiments have been conducted on a machine
with Intel core I5 CPU and 4GB RAM, running Ubuntu 14.04.

7.1. Energy Leaks from F-Droid

The first experiment is to address how precise our tool is. For that, we have collected 100 real An-
droid applications from F-Droid, a well-known open source Android application repository. We have used
our tool statedroid to detect energy leaks for each application, taking as a guide the resource protocols for
HTTP connection (Figure [8a), WakeLock (Figure and Media Player (Figure [8a) respectively. We have
also performed manual analysis on the high-level source codes of these applications where energy bugs
are reported. Please note that, since we use the soot framework to analyse Android applications in our
implementation, there exist too many bugs caused by exceptions. By now, as they are not easy to check by
hand, we decide not to take exceptions into account at the current stage but leave it to future work.

Table[6] summarises our findings of these 100 applications, where O denotes an opened resource which
is neither used nor closed, U denotes an opened resource which is used but not closed, C denotes a resource
that is closed eventually without using, T denotes the total resource bugs reported by our tool, FP denotes
the resource bugs reported by our tool but cannot be rediscovered manually, R denotes the resource kind
that causes the energy leak, and HC,WL and MP represent HTTP connection, WakeLock and Media Player
for short respectively. Note that there are no use behaviours for WakeLock.

The results show that among these 100 applications, our tool reports that (1) 18 applications have 102
energy leaks caused by HTTP connection; (2) 6 applications have 6 energy leaks caused by WakeLock;
(3) 6 applications have 7 energy leaks caused by Media Player; and (4) the precision rating of our tool is
about 83.5%. From the results, we also can see that lots of bugs are due to the unclosed-ness (i.e., O and
U). We believe the main reason is that programmers are prone to forget to close/release the resource for
every exit. For example, the application hydromemo creates a Medie Player but does not release it finally,
while the application betterwifionoff creates two WakeLocks (i.e., one for wifi and the other for screen) but
only releases the one for screen. Moreover, there are also many bugs due to the unused-ness (i.e., O and
C). This is mainly because programers are likely to open the resource in advance and close the resource at
the last minute without considering it is in need or not. For example, the application bib opens the HTTP
connection just to check the connection without using it.

Through the manual analysis on the high-level source codes of these applications where energy bugs
are reported, we found that 19 energy bugs turn out to be false positives. There are several reasons for these
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Table 6: Results for Selected Apks from F-Droid

APK oluj|cCc| T |FP| R APK 0] u C T FP R
antennapod | 1 | 4 | 0| 5 0 | HC bible 3 0 2 5 2 HC
coolreader 21110 3 0 | HC cordova 12 2 2 16 0 HC
derbund 1410 | 0] 14 | 0 | HC gearshift 3 1 1 5 1 HC
giga 11010 1 0 | HC goblim 1 1 0 2 0 HC
impeller 211 | 0| 22 0 | HC kontalk 6 1 2 9 1 HC
lico 21010 2 0 | HC mirakel 2 2 0 4 0 HC
mirrored 1 2 |1 4 4 | HC || movement 2 0 0 2 1 HC
muzei 210 10| 2 2 | HC || openmensa 0 3 0 3 0 HC
remote O(11]0 1 0 | HC tether 1 1 0 2 2 HC
adbwireless | 1 -] - 1 1 | WL androbe 1 - - 1 1 WL
betterwifi 1 - | - 1 0 | WL fbreader 1 - - 1 1 WL
smarterwifi 1 - - 1 1 | WL || ttrssreader 1 - - 1 0 WL
hydromemo | 1 010 1 0 | MP impeller 1 0 0 1 0 MP
tasks 1100 1 0 | MP || smspopup 1 0 0 1 1 MP
babymonitor | 0 | 1 |0 | 1 1 | MP imcktg 1 1 0 2 0 MP

Total 85|22 | 8| 115 | 19 - Ratio 73.9% | 19.1% | 7.0% | 1 | 16.5% -

19 false positives. The first one is the null pointer checking, due to which 57.9% (i.e., 11) false positives are
generated. However, since we maintain some relations between resources and variables, we can improve
our analysis to check the null pointer for some variables by these relations, which would reduce the false
positives and is left for future work. The second reason is that a variable such as state is used to simulate the
status of resources, and different actions are allowed to depend on this variable, such as the applications
adbwireless and fbReader. Our analysis does not catch this variable in its current form. The third reason is that
a type checking is performed before closing, for example, con instanceof HttpURLConnection is performed
before closing con in application mirrored. Another reason is due to the lifecycle of Android. For example,
in the application babymonitor, the callback function onCompletion, which will release the Media Player, is
invoked when the Media Player finishes the playing, but our tool can not catch this callback relation at the
current stage.

Moreover, we have investigated the precision rates of several static analysises on energy leaks from
their experimental studies: (1) the precision rate of the work of Pathak ef al. on no-sleep bugs [17] is about
76.4% (55 no-sleep bugs with 13 false positives found in 86 apks), which is lower than ours. (2) the precision
rate of Relda [15] is about 88.0% (92 energy leaks with 81 true positives found in 43 apks), which is slightly
higher than ours. But Relda is flow-insensitive. (3) Relda2 [18] supports both flow-sensitive analysis and
flow-insensitive analysis. Their precision rates are about 68.1% (69 energy leaks with 47 true positives
found in 76 apks) and about 55.4% (121 energy leaks with 67 true positives found in 76 apks) respectively,
both of which are lower than ours. We also compare our tool and Relda2 on a same dataset, and the
result shows that our tool is more precise than Relda2 (see Section for detail). (4) The work of Wu et
al. [19] summarizes two precise patterns for run-time GUI-related energy-drain behaviours and performs
their analysis on 15 apks which are known to suffer from energy leaks, thus it has a high precision: about
90.9% for the first pattern (11 energy leaks with 10 true positives found in 15 apks) and almost 100% for the
second pattern (17 real energy leaks found in 15 apks). Some of 15 apks are from GreenDroid, which can
be detected by our tool as well (see Section [.3). Although our tool seems to be less precise than this one,
we consider more usage patterns. In a nutshell, our tool is reasonably precise and can detect more usage
patterns, and thus would be very helpful in practice.
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Figure 13: Overhead for Different Apks

7.2. Performance

The second experiment is to address the performance of our tool. To do that, we have selected applica-
tions whose lines of code (LOC) range from 300 to 300000 from F-droid and performed our tool statedroid
to analyze each application, taking as a guide the resource protocols for HTTP connection. During the
analysis, we calculate the running time in seconds and the memory overhead in MBs that are needed by
each application.

Figure (13| shows the overhead only for those applications reported to suffer from energy leaks. The
running time for these applications ranges from 0.69s to 811.71s with an average of 98.10s, and the mem-
ory overhead is from 68.6MB to 1325.41MB with an average of 675.25MB. It signifies that our tool does
not cost too much time or memory, which indicates that our tool is quite suitable in practice. The figure
also shows the overall trend of the overhead: the larger the application, the more the time and memory
overhead. Note that there are some anomalous cases, due to fewer resource behaviours occurring in the
applications. Indeed, if an application contains no resource-related behaviours, the tool returns with no
bugs immediately.

7.3. Experiments on datasets from Relda and GreenDroid

Both Relda [[15,[18] and GreenDroid [16], two recent tools for detecting energy leaks for Android appli-
cations, consider partial usages of resources, hence, they cannot detect the energy leaks caused by some
other usages like open-but-not-used (such energy leaks are denoted by C in Table [6). In the following, we
perform our tool on the datasets from Relda and GreenDroid under the same resource usage patterns used
by Relda and GreenDroid to compare them more.

Relda. We have performed our tool and Relda2 (with flow-sensitive setting) on a data set from Relda,
the set of 55 applications from an Android application development book [20], taking as a guide the same
resources as Relda2, where the use behaviours of resources are omitted. Both Relda2 and our tool report
the same applications which may possibly suffer from energy leaksﬂ The detailed results are shown in
Figure [7] where E denotes the number of the energy leaks reported by our tool or Relda2, BT, CM, LM,
MR and WM represent Bluetooch, Camera, LocationManager, MediaRecorder and WifiManager for short
respectively, the other notations are the same as Table 6} The results show that: (1) our tool is more precise
than Relda2: through the manual analysis, there are 4 false positives for Relda2, while our tool has only
1. (2) our tool detects two more energy leaks in ase, one of which is caused by WakeLock and the other

®Reldal only detects four energy leaks from this dataset [15], while our tool can detect two more real energy leaks than Reldal
under the resources that Reldal detects.
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by Bluetooth. Note that Relda2 also detects two energy leaks caused by MediaRecoder in ase, but they are
false positives. (3) Relda2 seems to report more bugs than our tool does, but indeed these bugs are almost
the same. This is due to the different measurements: Relda2 counts the bugs by resource behaviours (i.e.,
APIs), while our tool counts by paths, which contain as many behaviours as possible.

Table 7: Comparison with Relda2

statedroid Relda2

APK E | FP R E|FP| R
ase 2|0 |WLBT| 2| 2 | MR
chess 110 MP 3|10 | MP
myAudioManger 110 MP 2 | 0 | MP
myBluetooth 110 BT 1| 0 | BT
myCamera 110 M 4 | 0 CM
myLocation 110 LM 10| LM
myMusicPlayer 1,0 MP 2|0 | MP
myMusicPlayOnline | 1 | 0 MP 310 | MP
myRecord 1|1 MR 2 | 2 | MR
mySdcardMusicPlay | 1 | 0 MP 7|0 | MP
mySdcardVideoPlay | 1 | 0 MP 310 | MP
mySeekPlay 1,0 MP 310 | MP
myVideoMake 110 MR 2 | 0| MR
myVideoPlayOnline | 1 | 0 MP 310 | MP
myWifi 110 WM 1] 0 |WM

Total 16 | 1 - 39| 4 -

In addition, taking several use behaviours of resources into account, our tool can detect two more real
energy leaks: one is from ase, due to that Bluetooth is opened and used, but not closed (which can be
detected by Relda); the other is from mySeekPlay, due to that MediaPlayer is opened and later closed, but
has never been used (which cannot be detected by Relda).

GreenDroid. We have also performed our tool on the Android applications that suffer from energy
leaks due to Lock and sensors detected by GreenDroidE] [21]. The results are shown in Table |8, where the
notations are the same as Table [/} Our tool can detect almost all the energy leaks that are detected by
GreenDroid, except for the one in ecycle-locator, which is because the class MapView can not be resolved by
the soot framework used in our tool. This is an implementation problem.

Table 8: Result on Dataset from GreenDroid

APK R | E APK R | E

DroidAR LM | 1 ecycle-locator | LM | 0

Sofia Public Trasport Nav | LM | 1 Ushahidi IM | 1
EbookDroid WL | 1 AndTweet WL | 1
BabbleSink WL | 1 || CWAC-Wakeful | WL | 1

GreenDroid adopts a dynamic analysis, and thus it can detect the underutilization problem quite well.
While our tool adopts a static analysis instead so that it cannot capture this underutilization problem.

7We have asked for GreenDroid but are not able to run it on our dataset.
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However, our tool considers more resource usages than GreenDroid, consequently it can detect more en-
ergy leaks caused by inappropriate resource usages, for example, the energy leaks denoted by C in Table|f]
and the one due to the unused MediaPlayer in mySeekPlay.

8. Related Work

There are many related works about resource usage analysis, such as resource management, API usages,
and energy bugs. Here we discuss some of the most related ones.

Resource Usage Analysis. DeLine and Fahndrich [3] proposed a type system to keep track of the state
(called a key) of a resource. The state of a resource determines what operations can be performed on the
resource, and the state changes after operations are performed. Therefore, keys in their type system roughly
correspond to the states of protocols in our state-taint analysis. However, their keys did not consider the
open-but-not-used issue, that is, an opened resource should be used. Moreover, their type system requires
programmers to provide explicit type annotations (including keys) to guide an analysis, which is not so
easy to give.

Igarashi and Kobayashi [[1]] formalized a general problem of how each resource is accessed as a resource
usage analysis problem, and proposed a type-based method to check whether the inferred resource usage
matches the programmer’s intention. As a follow-up, Kobayashi refined their type-based analysis by in-
troducing a new notion of time regions [6] , which can express how often an action can perform in a region
of time. Their type system is powerful and can deal with concurrent access to a resource. However, the
type system is too complex to use in practice for detecting resource bugs or energy leaks.

Kang et al. [7] presented a path sensitive type system for resource usage verification. They introduced
typing rules for conditions in branches to determine the boolean value of condition as possible. In contrast,
our analysis just union branches simply, thus is approximated. For example, if (f != null) then f.close() is
correct for their type system, but is considered problematic in our analysis. Nevertheless, we can improve
our analysis to handle some branches with the consistent checking in [22]. Our price is very low, while their
price is that they have to put lots of information into types.

Marriott et al. [5] specified the resource usage policy as an automaton and the program as a context-free
grammar, and then checked whether the language of the grammar is contained in the automaton. This is
very similar to our analysis. But our approach can analyse several resources at the same time while their
analysis does one resource at a time. Besides, they did not consider the open-but-not-used issue.

Torlak and Chandra [22] presented an effective data analysis to detect resource leaks. Their analysis is
very close to our analysis, but our analysis can detect not only resource leaks, but also other resource bugs
and energy leaks.

Fink et al. [23] proposed an effective typestate verification in the presence of aliasing to check correct
API usage for various Java standard libraries. Their verification tracks a must-alias set, a may-alias set and
a must-not-alias set meanwhile, thus it can handle aliasing very well. In contrast, our approach considers
just one must or may alias set. Although less precise, ours incurs lower cost and is simpler to use for
detecting resource bugs. Moreover, their verification did not ensure that a close API should be called for a
resource eventually nor that a use API should be called for an opened resource.

Besides, there are some other works that analyse or verify the bound usage or size property of re-
sources [24], 25, 26} 27, 28], while our analysis concerns about the correct usage of resource (e.g., to avoid
energy leaks).

Energy Bugs. There are many solutions proposed to detect energy bugs for applications. Most of them
rely on energy profilers to record resource usage and relevant events or codes. Although they can identify
some energy leaks and energy hots, they may not find the root causes for the bugs. Interesting readers
can refer to [29] for more detail. Here we discuss several latest solutions that adopt program analysis, and
consider the root causes of energy leaks.

Pathak et al. [17] proposed a data flow analysis to check Wakelock API (i.e., on and off) to find no
sleep bugs. Guo et al. [15] built a function call graph and then checked whether require and release actions
are matched, which is extended by Wu et al. [18]30] to an inter-procedural and callback-aware one. The

20



550

555

560

565

570

575

580

585

590

resource protocols considered by these methods are simper than our analysis, with only open and close
states.

Zhang et al. [8] presented a dynamic taint-tracking to detect energy leaks resulting from unnecessary
network communication. Liu et al. [16] used Java Path Finder not only to monitor sensor and wakelock
operations to detect missing deactivation of sensors and wakelocks, but also tracked the utilization of
sensory data. Compared to our analysis, these methods considered partial usages of network, sensors and
wakelocks. Wu et al. [19] defined two precise patterns of run-time energy-drain behaviours (i.e., lifetime
containtment and long-wait state) and presented a static analysis to detect these two patterns. The first
pattern indeed is a require-but-not-released behaviours and thus can be encoded by our protocols, while
the second one concerns the lifecycle and cannot be encoded by our protocols.

9. Conclusion

We have proposed a state-taint analysis, guided by user-specified resource usage protocols, for easy
detection of resource usage bugs. The analysis is general as it can work with different customised resource
usage protocols. As an application, we have shown the proposed state-taint analysis can be readily extended
to detect energy leaks for Android applications. To demonstrate the viability of the approach, we have
implemented the analysis in a prototype tool and carried out some interesting experiments.

As for future work, we may consider the null pointer checking to reduce false positives. We can improve
the protocols and/or the analysis to take into account the guards and the relations between resources. We
can also improve the current analysis by introducing partial orders on states to merge the data fact for same
resource but different states, which may benefit the analysis for large applications.
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